These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 24905493)

  • 1. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study.
    Briceño J; Cruz-Ramírez M; Prieto M; Navasa M; Ortiz de Urbina J; Orti R; Gómez-Bravo MÁ; Otero A; Varo E; Tomé S; Clemente G; Bañares R; Bárcena R; Cuervas-Mons V; Solórzano G; Vinaixa C; Rubín A; Colmenero J; Valdivieso A; Ciria R; Hervás-Martínez C; de la Mata M
    J Hepatol; 2014 Nov; 61(5):1020-8. PubMed ID: 24905493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks.
    Cruz-Ramírez M; Hervás-Martínez C; Fernández JC; Briceño J; de la Mata M
    Artif Intell Med; 2013 May; 58(1):37-49. PubMed ID: 23489761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation.
    Ayllón MD; Ciria R; Cruz-Ramírez M; Pérez-Ortiz M; Gómez I; Valente R; O'Grady J; de la Mata M; Hervás-Martínez C; Heaton ND; Briceño J
    Liver Transpl; 2018 Feb; 24(2):192-203. PubMed ID: 28921876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence for predicting survival following deceased donor liver transplantation: Retrospective multi-center study.
    Yu YD; Lee KS; Man Kim J; Ryu JH; Lee JG; Lee KW; Kim BW; Kim DS;
    Int J Surg; 2022 Sep; 105():106838. PubMed ID: 36028137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing repeat liver transplant graft utility through strategic matching of donor and recipient characteristics.
    Hung K; Gralla J; Dodge JL; Bambha KM; Dirchwolf M; Rosen HR; Biggins SW
    Liver Transpl; 2015 Nov; 21(11):1365-73. PubMed ID: 25865434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Who is too healthy and who is too sick for liver transplantation: external validation of prognostic scores and survival-benefit estimation.
    Åberg F; Nordin A; Mäkisalo H; Isoniemi H
    Scand J Gastroenterol; 2015; 50(9):1144-51. PubMed ID: 25865580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Artificial Intelligence for Predicting Survival of Individual Grafts in Liver Transplantation: A Systematic Review.
    Wingfield LR; Ceresa C; Thorogood S; Fleuriot J; Knight S
    Liver Transpl; 2020 Jul; 26(7):922-934. PubMed ID: 32274856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Donor-Model for End-Stage Liver Disease and donor-recipient matching in liver transplantation.
    Vitale A; Ramirez Morales R; dalla Bona E; Scopelliti M; Zanus G; Neri D; d'Amico F; Gringeri E; Russo F; Burra P; Angeli P; Cillo U
    Transplant Proc; 2011 May; 43(4):974-6. PubMed ID: 21620029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Donor and recipient factors predicting time to graft failure following orthotopic liver transplantation: a transplant risk index.
    Stey AM; Doucette J; Florman S; Emre S
    Transplant Proc; 2013; 45(6):2077-82. PubMed ID: 23953516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Should a lower quality organ go to the least sick patient? Model for end-stage liver disease score and donor risk index as predictors of early allograft dysfunction.
    Croome KP; Marotta P; Wall WJ; Dale C; Levstik MA; Chandok N; Hernandez-Alejandro R
    Transplant Proc; 2012 Jun; 44(5):1303-6. PubMed ID: 22664005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Different Scoring Systems Based on Both Donor and Recipient Characteristics for Predicting Outcome after Living Donor Liver Transplantation.
    Ma Y; Wang Q; Yang J; Yan L
    PLoS One; 2015; 10(9):e0136604. PubMed ID: 26378786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-MELD as a predictor of early graft mortality in adult-to-adult living-donor liver transplantation.
    Ikegami T; Imai D; Wang H; Yoshizumi T; Yamashita Y; Ninomiya M; Iguchi T; Bekki Y; Shirabe K; Maehara Y
    Transplantation; 2014 Feb; 97(4):457-62. PubMed ID: 24531822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver Match, a prospective observational cohort study on liver transplantation in Italy: study design and current practice of donor-recipient matching.
    Angelico M; Cillo U; Fagiuoli S; Gasbarrini A; Gavrila C; Marianelli T; Costa AN; Nardi A; Strazzabosco M; Burra P; Agnes S; Baccarani U; Calise F; Colledan M; Cuomo O; De Carlis L; Donataccio M; Ettorre GM; Gerunda GE; Gridelli B; Lupo L; Mazzaferro V; Pinna A; Risaliti A; Salizzoni M; Tisone G; Valente U; Rossi G; Rossi M; Zamboni F;
    Dig Liver Dis; 2011 Feb; 43(2):155-64. PubMed ID: 21185796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the liver match study.
    Angelico M; Nardi A; Romagnoli R; Marianelli T; Corradini SG; Tandoi F; Gavrila C; Salizzoni M; Pinna AD; Cillo U; Gridelli B; De Carlis LG; Colledan M; Gerunda GE; Costa AN; Strazzabosco M;
    Dig Liver Dis; 2014 Apr; 46(4):340-7. PubMed ID: 24411484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease.
    Cucchetti A; Vivarelli M; Heaton ND; Phillips S; Piscaglia F; Bolondi L; La Barba G; Foxton MR; Rela M; O'Grady J; Pinna AD
    Gut; 2007 Feb; 56(2):253-8. PubMed ID: 16809421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UNOS Liver Registry: ten year survivals.
    Waki K
    Clin Transpl; 2006; ():29-39. PubMed ID: 18368704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of liver transplantation during 3 decades: analysis of 5347 consecutive liver transplants at a single center.
    Agopian VG; Petrowsky H; Kaldas FM; Zarrinpar A; Farmer DG; Yersiz H; Holt C; Harlander-Locke M; Hong JC; Rana AR; Venick R; McDiarmid SV; Goldstein LI; Durazo F; Saab S; Han S; Xia V; Hiatt JR; Busuttil RW
    Ann Surg; 2013 Sep; 258(3):409-21. PubMed ID: 24022434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network is highly predictive of outcome in paediatric acute liver failure.
    Rajanayagam J; Frank E; Shepherd RW; Lewindon PJ
    Pediatr Transplant; 2013 Sep; 17(6):535-42. PubMed ID: 23802584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. http://www.D-MELD.com, the Italian survival calculator to optimize donor to recipient matching and to identify the unsustainable matches in liver transplantation.
    Avolio AW; Agnes S; Cillo U; Lirosi MC; Romagnoli R; Baccarani U; Zamboni F; Nicolini D; Donataccio M; Perrella A; Ettorre GM; Romano M; Morelli N; Vennarecci G; de Waure C; Fagiuoli S; Burra P; Cucchetti A
    Transpl Int; 2012 Mar; 25(3):294-301. PubMed ID: 22268763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the donor risk index on the outcome of hepatitis C virus-positive liver transplant recipients.
    Maluf DG; Edwards EB; Stravitz RT; Kauffman HM
    Liver Transpl; 2009 Jun; 15(6):592-9. PubMed ID: 19479802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.