These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24905642)

  • 41. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel.
    Wiangkham N; Prapagdee B
    Chemosphere; 2018 Jun; 201():511-518. PubMed ID: 29529578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MISCANTHUS X GIGANTEUS AS A NEW HIGHLY EFFICIENT PHYTOREMEDIATION AGENT FOR IMPROVING SOILS CONTAMINATED BY PESTICIDES RESIDUES AND SUPPLEMENTED CONTAMINANTS.
    Nurzhanova A; Pidlisnyuk V; Kalugin S; Stefanovska T; Drimal M
    Commun Agric Appl Biol Sci; 2015; 80(3):361-6. PubMed ID: 27141732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selenium and sulfur accumulation and soil selenium dissipation in planting of four herbaceous plant species in soil contaminated with drainage sediment rich in both selenium and sulfur.
    Wu L; Guo X; Bañuelos GS
    Int J Phytoremediation; 2003; 5(1):25-40. PubMed ID: 12710233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.
    Joo E; Hussain MZ; Zeri M; Masters MD; Miller JN; Gomez-Casanovas N; DeLucia EH; Bernacchi CJ
    Plant Cell Environ; 2016 Sep; 39(9):1928-40. PubMed ID: 27043723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge.
    Voća N; Leto J; Karažija T; Bilandžija N; Peter A; Kutnjak H; Šurić J; Poljak M
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potential of four forage grasses in remediation of Cd and Zn contaminated soils.
    Zhang X; Xia H; Li Z; Zhuang P; Gao B
    Bioresour Technol; 2010 Mar; 101(6):2063-6. PubMed ID: 20005700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biofuels on the landscape: is "land sharing" preferable to "land sparing"?
    Anderson-Teixeira KJ; Duval BD; Long SP; DeLucia EH
    Ecol Appl; 2012 Dec; 22(8):2035-48. PubMed ID: 23387108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
    van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM
    BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.
    Qin Z; Zhuang Q; Zhu X; Cai X; Zhang X
    Environ Sci Technol; 2011 Dec; 45(24):10765-72. PubMed ID: 22085109
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.
    Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH
    Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using bioenergy crop cassava (
    Shen S; Chen J; Chang J; Xia B
    Int J Phytoremediation; 2020; 22(12):1313-1320. PubMed ID: 32425052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: an in vitro study.
    Técher D; Laval-Gilly P; Henry S; Bennasroune A; Formanek P; Martinez-Chois C; D'Innocenzo M; Muanda F; Dicko A; Rejšek K; Falla J
    Sci Total Environ; 2011 Sep; 409(20):4489-95. PubMed ID: 21782215
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feedstocks for lignocellulosic biofuels.
    Somerville C; Youngs H; Taylor C; Davis SC; Long SP
    Science; 2010 Aug; 329(5993):790-2. PubMed ID: 20705851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site.
    Firmin S; Labidi S; Fontaine J; Laruelle F; Tisserant B; Nsanganwimana F; Pourrut B; Dalpé Y; Grandmougin A; Douay F; Shirali P; Verdin A; Lounès-Hadj Sahraoui A
    Sci Total Environ; 2015 Sep; 527-528():91-9. PubMed ID: 25958358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-culture between
    Wechtler L; Falla-Angel J; Bonnefoy A; Laval-Gilly P
    Int J Phytoremediation; 2024; 26(1):143-150. PubMed ID: 37405370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Threshold dynamics in soil carbon storage for bioenergy crops.
    Woo DK; Quijano JC; Kumar P; Chaoka S; Bernacchi CJ
    Environ Sci Technol; 2014 Oct; 48(20):12090-8. PubMed ID: 25207669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites.
    Burges A; Alkorta I; Epelde L; Garbisu C
    Int J Phytoremediation; 2018 Mar; 20(4):384-397. PubMed ID: 28862473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield.
    Robson PR; Farrar K; Gay AP; Jensen EF; Clifton-Brown JC; Donnison IS
    J Exp Bot; 2013 May; 64(8):2373-83. PubMed ID: 23599277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The performance of
    Zheng C; Yi Z; Xiao L; Sun G; Li M; Xue S; Peng X; Duan M; Chen Z
    Front Plant Sci; 2022; 13():921824. PubMed ID: 36311103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.