These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24905642)

  • 61. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.
    Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G
    Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil.
    Ahsan MT; Najam-Ul-Haq M; Saeed A; Mustafa T; Afzal M
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):7021-7032. PubMed ID: 29273991
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands.
    Poria V; Dębiec-Andrzejewska K; Fiodor A; Lyzohub M; Ajijah N; Singh S; Pranaw K
    Front Plant Sci; 2022; 13():999866. PubMed ID: 36340355
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop.
    Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.
    Nishiwaki A; Mizuguti A; Kuwabara S; Toma Y; Ishigaki G; Miyashita T; Yamada T; Matuura H; Yamaguchi S; Rayburn AL; Akashi R; Stewart JR
    Am J Bot; 2011 Jan; 98(1):154-9. PubMed ID: 21613094
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Exploring the benefits of growing bioenergy crops to activate lead-contaminated agricultural land: a case study on sweet potatoes.
    Cheng SF; Huang CY; Chen KL; Lin SC; Lin YC
    Environ Monit Assess; 2015 Mar; 187(3):144. PubMed ID: 25716522
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.
    Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM
    Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Response to Grygar (2020) comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus"- Pidlisnyuk et al. (2019). Environmental pollution, 261: 113038.
    Pidlisnyuk V; Erickson L; Stefanovska T; Hettiarachchi G; Davis L; Trögl J; Shapoval P
    Environ Pollut; 2021 Mar; 272():115037. PubMed ID: 32653105
    [No Abstract]   [Full Text] [Related]  

  • 71. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety.
    Mench M; Schwitzguébel JP; Schroeder P; Bert V; Gawronski S; Gupta S
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):876-900. PubMed ID: 19823886
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil.
    Burges A; Epelde L; Benito G; Artetxe U; Becerril JM; Garbisu C
    Sci Total Environ; 2016 Aug; 562():480-492. PubMed ID: 27107647
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry?
    Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P
    Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The use of plants for remediation of metal-contaminated soils.
    Vassilev A; Schwitzguebel JP; Thewys T; Van Der Lelie D; Vangronsveld J
    ScientificWorldJournal; 2004 Jan; 4():9-34. PubMed ID: 14755099
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Long term growth of crop plants on experimental plots created among slag heaps.
    Halecki W; Klatka S
    Ecotoxicol Environ Saf; 2018 Jan; 147():86-92. PubMed ID: 28837874
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus" - Pidlisnyuk et al. (2019).
    Matys Grygar T
    Environ Pollut; 2020 Jun; 261():113038. PubMed ID: 32392693
    [No Abstract]   [Full Text] [Related]  

  • 79. Miscanthus biochar value chain - A review.
    Pidlisnyuk V; Newton RA; Mamirova A
    J Environ Manage; 2021 Jul; 290():112611. PubMed ID: 33892232
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach.
    Heckenroth A; Rabier J; Dutoit T; Torre F; Prudent P; Laffont-Schwob I
    J Environ Manage; 2016 Dec; 183(Pt 3):850-863. PubMed ID: 27665125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.