BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 24905787)

  • 1. Mechanism and function of oxidative reversal of DNA and RNA methylation.
    Shen L; Song CX; He C; Zhang Y
    Annu Rev Biochem; 2014; 83():585-614. PubMed ID: 24905787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic analysis of Tet proteins: key enzymes in the metabolism of DNA methylation.
    Shen L; Zhang Y
    Methods Enzymol; 2012; 512():93-105. PubMed ID: 22910204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Function of TET Enzymes.
    Yin X; Hu L; Xu Y
    Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TET-mediated active DNA demethylation: mechanism, function and beyond.
    Wu X; Zhang Y
    Nat Rev Genet; 2017 Sep; 18(9):517-534. PubMed ID: 28555658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale.
    Xia B; Han D; Lu X; Sun Z; Zhou A; Yin Q; Zeng H; Liu M; Jiang X; Xie W; He C; Yi C
    Nat Methods; 2015 Nov; 12(11):1047-50. PubMed ID: 26344045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic DNA oxidation: mechanisms and biological significance.
    Xu GL; Walsh CP
    BMB Rep; 2014 Nov; 47(11):609-18. PubMed ID: 25341925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer.
    Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD
    Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TET proteins and 5-methylcytosine oxidation in the immune system.
    Tsagaratou A; Rao A
    Cold Spring Harb Symp Quant Biol; 2013; 78():1-10. PubMed ID: 24619230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connections between TET proteins and aberrant DNA modification in cancer.
    Huang Y; Rao A
    Trends Genet; 2014 Oct; 30(10):464-74. PubMed ID: 25132561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
    Shen L; Wu H; Diep D; Yamaguchi S; D'Alessio AC; Fung HL; Zhang K; Zhang Y
    Cell; 2013 Apr; 153(3):692-706. PubMed ID: 23602152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H; Chen T
    J Hum Genet; 2013 Jul; 58(7):421-7. PubMed ID: 23719188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing Active Versus Passive DNA Demethylation Using Illumina MethylationEPIC BeadChip Microarrays.
    Tiedemann RL; Eden HE; Huang Z; Robertson KD; Rothbart SB
    Methods Mol Biol; 2021; 2272():97-140. PubMed ID: 34009611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.