BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

750 related articles for article (PubMed ID: 24905787)

  • 41. Tet proteins: on track towards DNA demethylation?
    Véron N
    Biomol Concepts; 2012 Oct; 3(5):395-402. PubMed ID: 25436545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH
    Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global DNA 5-Hydroxymethylcytosine and 5-Formylcytosine Contents Are Decreased in the Early Stage of Hepatocellular Carcinoma.
    Liu J; Jiang J; Mo J; Liu D; Cao D; Wang H; He Y; Wang H
    Hepatology; 2019 Jan; 69(1):196-208. PubMed ID: 30070373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation.
    Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ
    Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine.
    Klungland A; Robertson AB
    Free Radic Biol Med; 2017 Jun; 107():62-68. PubMed ID: 27890639
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic Regulation of Genomic Stability by Vitamin C.
    Brabson JP; Leesang T; Mohammad S; Cimmino L
    Front Genet; 2021; 12():675780. PubMed ID: 34017357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation.
    Iurlaro M; Ficz G; Oxley D; Raiber EA; Bachman M; Booth MJ; Andrews S; Balasubramanian S; Reik W
    Genome Biol; 2013; 14(10):R119. PubMed ID: 24156278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LuxGLM: a probabilistic covariate model for quantification of DNA methylation modifications with complex experimental designs.
    Äijö T; Yue X; Rao A; Lähdesmäki H
    Bioinformatics; 2016 Sep; 32(17):i511-i519. PubMed ID: 27587669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation.
    Inoue A; Matoba S; Zhang Y
    Cell Res; 2012 Dec; 22(12):1640-9. PubMed ID: 23184059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Research advances in TET enzyme and its intermediate product 5hmC].
    Wu J; Fang X; Xia X; Zhang M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2019 Apr; 44(4):449-454. PubMed ID: 31113923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine.
    Fu T; Liu L; Yang QL; Wang Y; Xu P; Zhang L; Liu S; Dai Q; Ji Q; Xu GL; He C; Luo C; Zhang L
    Chem Sci; 2019 Aug; 10(31):7407-7417. PubMed ID: 31489163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Oxidation and deamination of nucleobases as an epigenetic tool].
    Guz J; Jurgowiak M; Oliński R
    Postepy Hig Med Dosw (Online); 2012 May; 66():275-86. PubMed ID: 22706113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea.
    Chavez L; Huang Y; Luong K; Agarwal S; Iyer LM; Pastor WA; Hench VK; Frazier-Bowers SA; Korol E; Liu S; Tahiliani M; Wang Y; Clark TA; Korlach J; Pukkila PJ; Aravind L; Rao A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5149-58. PubMed ID: 25406324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies.
    Lio CJ; Yuita H; Rao A
    Blood; 2019 Oct; 134(18):1487-1497. PubMed ID: 31467060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution and regulatory roles of oxidized 5-methylcytosines in DNA and RNA of the basidiomycete fungi
    Ličytė J; Kvederavičiūtė K; Rukšėnaitė A; Godliauskaitė E; Gibas P; Tomkutė V; Petraitytė G; Masevičius V; Klimašauskas S; Kriukienė E
    Open Biol; 2022 Mar; 12(3):210302. PubMed ID: 35232254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis.
    Neri F; Incarnato D; Krepelova A; Parlato C; Oliviero S
    Nat Protoc; 2016 Jul; 11(7):1191-205. PubMed ID: 27281647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of Tet proteins in enhancer activity and telomere elongation.
    Lu F; Liu Y; Jiang L; Yamaguchi S; Zhang Y
    Genes Dev; 2014 Oct; 28(19):2103-19. PubMed ID: 25223896
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq.
    Wu H; Wu X; Zhang Y
    Nat Protoc; 2016 Jun; 11(6):1081-100. PubMed ID: 27172168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification.
    Dietzsch J; Feineis D; Höbartner C
    FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.