These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24906030)

  • 1. High-energy redox-flow batteries with hybrid metal foam electrodes.
    Park MS; Lee NJ; Lee SW; Kim KJ; Oh DJ; Kim YJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10729-35. PubMed ID: 24906030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.
    Lee K; Lee J; Kwon KW; Park MS; Hwang JH; Kim KJ
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22502-22508. PubMed ID: 28631481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.
    Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid Suspension Flow Batteries Using Earth Abundant Materials.
    Mubeen S; Jun YS; Lee J; McFarland EW
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1759-65. PubMed ID: 26727225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Voltage Catholyte for High-Energy-Density Nonaqueous Redox Flow Battery.
    McGrath J; Gautam RK; Wang X; Jiang JJ
    Angew Chem Int Ed Engl; 2024 Sep; 63(37):e202407906. PubMed ID: 38842475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.
    Yu M; McCulloch WD; Beauchamp DR; Huang Z; Ren X; Wu Y
    J Am Chem Soc; 2015 Jul; 137(26):8332-5. PubMed ID: 26102317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery.
    Wang W; Xu W; Cosimbescu L; Choi D; Li L; Yang Z
    Chem Commun (Camb); 2012 Jul; 48(53):6669-71. PubMed ID: 22641051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper Collector Generated Cu
    Zhang G; Liu X; Wang L; Xing G; Tian C; Fu H
    ACS Nano; 2022 Oct; 16(10):17139-17148. PubMed ID: 36130105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.
    Kim KJ; Park MS; Kim JH; Hwang U; Lee NJ; Jeong G; Kim YJ
    Chem Commun (Camb); 2012 Jun; 48(44):5455-7. PubMed ID: 22540132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High Voltage Aqueous Zinc-Vanadium Redox Flow Battery with Bimodal Tin and Copper Clusters by a Continuous-Flow Electrometallic Synthesis.
    Lee S; Kim M; Park J; Choi J; Kang J; Park M
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7002-7013. PubMed ID: 36710651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Vanadium Redox-Flow Battery Assisted by Redox-Mediated Catalysis.
    Xia L; Long T; Li W; Zhong F; Ding M; Long Y; Xu Z; Lei Y; Guan Y; Yuan D; Zhang Y; Jia C; Sun L; Sun Q
    Small; 2020 Sep; 16(38):e2003321. PubMed ID: 32812393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery.
    Yu X; Yu WA; Manthiram A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48654-48661. PubMed ID: 33064445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling desalination and energy storage with redox flow electrodes.
    Hou X; Liang Q; Hu X; Zhou Y; Ru Q; Chen F; Hu S
    Nanoscale; 2018 Jul; 10(26):12308-12314. PubMed ID: 29942958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.