These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24906175)

  • 1. Fast Bayesian parameter estimation for stochastic logistic growth models.
    Heydari J; Lawless C; Lydall DA; Wilkinson DJ
    Biosystems; 2014 Aug; 122():55-72. PubMed ID: 24906175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation.
    Lenive O; W Kirk PD; H Stumpf MP
    BMC Syst Biol; 2016 Aug; 10(1):81. PubMed ID: 27549182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference for reaction networks using the linear noise approximation.
    Fearnhead P; Giagos V; Sherlock C
    Biometrics; 2014 Jun; 70(2):457-66. PubMed ID: 24467590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference.
    Minas G; Rand DA
    PLoS Comput Biol; 2017 Jul; 13(7):e1005676. PubMed ID: 28742083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey.
    Stano P; Lendek Z; Braaksma J; Babuska R; de Keizer C; den Dekker AJ
    IEEE Trans Cybern; 2013 Dec; 43(6):1607-24. PubMed ID: 23757593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference for stochastic kinetic models using a diffusion approximation.
    Golightly A; Wilkinson DJ
    Biometrics; 2005 Sep; 61(3):781-8. PubMed ID: 16135029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter inference for stochastic biochemical models from perturbation experiments parallelised at the single cell level.
    Davidović A; Chait R; Batt G; Ruess J
    PLoS Comput Biol; 2022 Mar; 18(3):e1009950. PubMed ID: 35303737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Inference of Stochastic Dynamic Models Using Early-Rejection Methods Based on Sequential Stochastic Simulations.
    Zhang H; Chen J; Tian T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1484-1494. PubMed ID: 33216717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory inference and parameter estimation in stochastic models with temporally aggregated data.
    Folia MM; Rattray M
    Stat Comput; 2018; 28(5):1053-1072. PubMed ID: 30147250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of nonlinear mixed-effects continuous-time models using the continuous-discrete extended Kalman filter.
    Ou L; Hunter MD; Lu Z; Stifter CA; Chow SM
    Br J Math Stat Psychol; 2023 Nov; 76(3):462-490. PubMed ID: 37674379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.
    Wilkinson RD
    Stat Appl Genet Mol Biol; 2013 May; 12(2):129-41. PubMed ID: 23652634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.
    Klim S; Mortensen SB; Kristensen NR; Overgaard RV; Madsen H
    Comput Methods Programs Biomed; 2009 Jun; 94(3):279-89. PubMed ID: 19268387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.
    Zimmer C; Sahle S
    IET Syst Biol; 2015 Oct; 9(5):181-92. PubMed ID: 26405142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Linear Noise Approximation for Spatially Dependent Biochemical Networks.
    Lötstedt P
    Bull Math Biol; 2019 Aug; 81(8):2873-2901. PubMed ID: 29644520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm.
    Overgaard RV; Jonsson N; Tornøe CW; Madsen H
    J Pharmacokinet Pharmacodyn; 2005 Feb; 32(1):85-107. PubMed ID: 16175312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How reliable is the linear noise approximation of gene regulatory networks?
    Thomas P; Matuschek H; Grima R
    BMC Genomics; 2013; 14 Suppl 4(Suppl 4):S5. PubMed ID: 24266939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How noisy adaptation of neurons shapes interspike interval histograms and correlations.
    Schwalger T; Fisch K; Benda J; Lindner B
    PLoS Comput Biol; 2010 Dec; 6(12):e1001026. PubMed ID: 21187900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact Gradients Improve Parameter Estimation in Nonlinear Mixed Effects Models with Stochastic Dynamics.
    Olafsdottir HK; Leander J; Almquist J; Jirstrand M
    AAPS J; 2018 Aug; 20(5):88. PubMed ID: 30069613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.