These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 24906178)
1. Comparative genomics of the protocatechuate branch of the β-ketoadipate pathway in the Roseobacter lineage. Alejandro-Marín CM; Bosch R; Nogales B Mar Genomics; 2014 Oct; 17():25-33. PubMed ID: 24906178 [TBL] [Abstract][Full Text] [Related]
2. Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage. Buchan A; Neidle EL; Moran MA Appl Environ Microbiol; 2004 Mar; 70(3):1658-68. PubMed ID: 15006791 [TBL] [Abstract][Full Text] [Related]
3. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Buchan A; Collier LS; Neidle EL; Moran MA Appl Environ Microbiol; 2000 Nov; 66(11):4662-72. PubMed ID: 11055908 [TBL] [Abstract][Full Text] [Related]
4. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. Nichols NN; Harwood CS J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Brzostowicz PC; Reams AB; Clark TJ; Neidle EL Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. Li D; Yan Y; Ping S; Chen M; Zhang W; Li L; Lin W; Geng L; Liu W; Lu W; Lin M BMC Microbiol; 2010 Feb; 10():36. PubMed ID: 20137101 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate. Romero-Steiner S; Parales RE; Harwood CS; Houghton JE J Bacteriol; 1994 Sep; 176(18):5771-9. PubMed ID: 8083169 [TBL] [Abstract][Full Text] [Related]
8. Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach. Park SH; Kim JW; Yun SH; Leem SH; Kahng HY; Kim SI J Microbiol; 2006 Dec; 44(6):632-40. PubMed ID: 17205041 [TBL] [Abstract][Full Text] [Related]
9. Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Davis JR; Sello JK Appl Microbiol Biotechnol; 2010 Apr; 86(3):921-9. PubMed ID: 20012281 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. MacLean AM; MacPherson G; Aneja P; Finan TM Appl Environ Microbiol; 2006 Aug; 72(8):5403-13. PubMed ID: 16885292 [TBL] [Abstract][Full Text] [Related]
11. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. Parke D J Bacteriol; 1995 Jul; 177(13):3808-17. PubMed ID: 7601847 [TBL] [Abstract][Full Text] [Related]
12. The beta-ketoadipate pathway and the biology of self-identity. Harwood CS; Parales RE Annu Rev Microbiol; 1996; 50():553-90. PubMed ID: 8905091 [TBL] [Abstract][Full Text] [Related]
13. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Shen X; Liu S Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756 [TBL] [Abstract][Full Text] [Related]
14. Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. Romero-Silva MJ; Méndez V; Agulló L; Seeger M PLoS One; 2013; 8(2):e56038. PubMed ID: 23418504 [TBL] [Abstract][Full Text] [Related]
15. In vitro reconstitution of the catabolic reactions catalyzed by PcaHG, PcaB, and PcaL: the protocatechuate branch of the β-ketoadipate pathway in Rhodococcus jostii RHA1. Yamanashi T; Kim SY; Hara H; Funa N Biosci Biotechnol Biochem; 2015; 79(5):830-5. PubMed ID: 25558786 [TBL] [Abstract][Full Text] [Related]
16. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. Parke D J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427 [TBL] [Abstract][Full Text] [Related]
17. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the beta-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Habe H; Chung JS; Ishida A; Kasuga K; Ide K; Takemura T; Nojiri H; Yamane H; Omori T Microbiology (Reading); 2005 Nov; 151(Pt 11):3713-3722. PubMed ID: 16272392 [TBL] [Abstract][Full Text] [Related]
18. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. Gaines GL; Smith L; Neidle EL J Bacteriol; 1996 Dec; 178(23):6833-41. PubMed ID: 8955304 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199. Overhage J; Kresse AU; Priefert H; Sommer H; Krammer G; Rabenhorst J; Steinbüchel A Appl Environ Microbiol; 1999 Mar; 65(3):951-60. PubMed ID: 10049847 [TBL] [Abstract][Full Text] [Related]
20. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Luu RA; Kootstra JD; Nesteryuk V; Brunton CN; Parales JV; Ditty JL; Parales RE Mol Microbiol; 2015 Apr; 96(1):134-47. PubMed ID: 25582673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]