These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 24906445)
1. Neuromuscular control of goal-directed ankle movements differs for healthy children and adults. Fox EJ; Moon H; Kwon M; Chen YT; Christou EA Eur J Appl Physiol; 2014 Sep; 114(9):1889-99. PubMed ID: 24906445 [TBL] [Abstract][Full Text] [Related]
2. Motor plan differs for young and older adults during similar movements. Casamento-Moran A; Chen YT; Lodha N; Yacoubi B; Christou EA J Neurophysiol; 2017 Apr; 117(4):1483-1488. PubMed ID: 28077666 [TBL] [Abstract][Full Text] [Related]
3. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Casamento-Moran A; Hunter SK; Chen YT; Kwon MH; Fox EJ; Yacoubi B; Christou EA Exp Brain Res; 2017 Aug; 235(8):2425-2436. PubMed ID: 28500456 [TBL] [Abstract][Full Text] [Related]
4. Aging and limb alter the neuromuscular control of goal-directed movements. Kwon M; Chen YT; Fox EJ; Christou EA Exp Brain Res; 2014 Jun; 232(6):1759-71. PubMed ID: 24557320 [TBL] [Abstract][Full Text] [Related]
5. High-gain visual feedback exacerbates ankle movement variability in children. Moon H; Kim C; Kwon M; Chen YT; Fox E; Christou EA Exp Brain Res; 2015 May; 233(5):1597-606. PubMed ID: 25744054 [TBL] [Abstract][Full Text] [Related]
6. Neuromuscular variability and spatial accuracy in children and older adults. Casamento-Moran A; Fleeman R; Chen YT; Kwon M; Fox EJ; Yacoubi B; Christou EA J Electromyogr Kinesiol; 2018 Aug; 41():27-33. PubMed ID: 29723799 [TBL] [Abstract][Full Text] [Related]
7. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors. Kurz E; Faude O; Roth R; Zahner L; Donath L Eur J Appl Physiol; 2018 Feb; 118(2):239-247. PubMed ID: 29188450 [TBL] [Abstract][Full Text] [Related]
8. Altered activation of the antagonist muscle during practice compromises motor learning in older adults. Chen YT; Kwon M; Fox EJ; Christou EA J Neurophysiol; 2014 Aug; 112(4):1010-9. PubMed ID: 24848478 [TBL] [Abstract][Full Text] [Related]
9. Older adults use a motor plan that is detrimental to endpoint control. Delmas S; Choi YJ; Komer M; Weintraub M; Yacoubi B; Christou EA Sci Rep; 2021 Apr; 11(1):7562. PubMed ID: 33828133 [TBL] [Abstract][Full Text] [Related]
10. Maturation of feedforward toe walking motor program is impaired in children with cerebral palsy. Lorentzen J; Willerslev-Olsen M; Hüche Larsen H; Farmer SF; Nielsen JB Brain; 2019 Mar; 142(3):526-541. PubMed ID: 30726881 [TBL] [Abstract][Full Text] [Related]
11. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training. Donath L; Kurz E; Roth R; Zahner L; Faude O BMC Geriatr; 2015 Mar; 15():19. PubMed ID: 25888336 [TBL] [Abstract][Full Text] [Related]
12. Ankle variability is amplified in older adults due to lower EMG power from 30-60 Hz. Kwon M; Baweja HS; Christou EA Hum Mov Sci; 2012 Dec; 31(6):1366-78. PubMed ID: 23089330 [TBL] [Abstract][Full Text] [Related]
13. The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence. Spedden ME; Jensen P; Terkildsen CU; Jensen NJ; Halliday DM; Lundbye-Jensen J; Nielsen JB; Geertsen SS Neuroimage; 2019 May; 191():350-360. PubMed ID: 30818025 [TBL] [Abstract][Full Text] [Related]
14. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans. Lavoie BA; Devanne H; Capaday C J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291 [TBL] [Abstract][Full Text] [Related]
15. Endpoint accuracy of goal-directed ankle movements correlates to over-ground walking in stroke. Lodha N; Patel P; Casamento-Moran A; Gauger K; Christou EA Clin Neurophysiol; 2019 Jun; 130(6):1008-1016. PubMed ID: 31005051 [TBL] [Abstract][Full Text] [Related]
16. Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement. Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R Exp Brain Res; 2019 Sep; 237(9):2239-2254. PubMed ID: 31243484 [TBL] [Abstract][Full Text] [Related]
17. Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. Geertsen SS; Zuur AT; Nielsen JB J Physiol; 2010 Jul; 588(Pt 13):2391-402. PubMed ID: 20457734 [TBL] [Abstract][Full Text] [Related]
18. Changes in tibialis anterior architecture affect the amplitude of surface electromyograms. Vieira TM; Bisi MC; Stagni R; Botter A J Neuroeng Rehabil; 2017 Aug; 14(1):81. PubMed ID: 28807025 [TBL] [Abstract][Full Text] [Related]
19. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA; Lundbye-Jensen J; Nielsen JB J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616 [TBL] [Abstract][Full Text] [Related]
20. The nature of facilitation of leg muscle motor evoked potentials by knee flexion. Izumi SI; Furukawa T; Koyama Y; Ishida A Somatosens Mot Res; 2001; 18(4):322-9. PubMed ID: 11794734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]