BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24906764)

  • 1. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.
    Solanki A; Mehta J; Thakore S
    Carbohydr Polym; 2014 Sep; 110():338-44. PubMed ID: 24906764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation.
    Batool JA; Rehman K; Qader A; Akash MSH
    Curr Pharm Des; 2022; 28(20):1669-1687. PubMed ID: 35040410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes.
    Chang CH; Tsao CT; Chang KY; Chen SH; Han JL; Hsieh KH
    Biomed Mater Eng; 2012; 22(6):373-82. PubMed ID: 23114466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications.
    Solanki A; Das M; Thakore S
    Carbohydr Polym; 2018 Feb; 181():1003-1016. PubMed ID: 29253925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-Crosslinked Polyurethanes with Excellent Shape Memory Property.
    Liu W; Zhao Y; Wang R; Li J; Li J; Luo F; Tan H; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 29083102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers.
    Xiao K; Wang Z; Wu Y; Lin W; He Y; Zhan J; Luo F; Li Z; Li J; Tan H; Fu Q
    J Biomed Mater Res A; 2019 Oct; 107(10):2205-2221. PubMed ID: 31116494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders.
    Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO
    Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.
    Tan ACW; Polo-Cambronell BJ; Provaggi E; Ardila-Suárez C; Ramirez-Caballero GE; Baldovino-Medrano VG; Kalaskar DM
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29159831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and biocompatibility of novel biodegradable cross-linked co-polymers based on poly(propylene oxide) diglycidylether and polyethylenimine.
    Ding Y; Wang J; Wong CS; Halley PJ; Guo Q
    J Biomater Sci Polym Ed; 2011; 22(4-6):457-73. PubMed ID: 20566040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candidate Polyurethanes Based on Castor Oil (
    Uscátegui YL; Díaz LE; Gómez-Tejedor JA; Vallés-Lluch A; Vilariño-Feltrer G; Serrano MA; Valero MF
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30634633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of bi-soft segmented polyurethane microparticles for biomedical application.
    Campos E; Cordeiro R; Santos AC; Matos C; Gil MH
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):477-82. PubMed ID: 21821400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders.
    Chan-Chan LH; Solis-Correa R; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Quintana P; Bartolo-Pérez P
    Acta Biomater; 2010 Jun; 6(6):2035-44. PubMed ID: 20004749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.
    Zhang C; Ding R; Kessler MR
    Macromol Rapid Commun; 2014 Jun; 35(11):1068-74. PubMed ID: 24668919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers.
    Solanki A; Thakore S
    Int J Biol Macromol; 2015 Sep; 80():683-91. PubMed ID: 26188306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing a castor oil-based polyurethane as bioadhesive.
    Su Q; Wei D; Dai W; Zhang Y; Xia Z
    Colloids Surf B Biointerfaces; 2019 Sep; 181():740-748. PubMed ID: 31229801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications.
    Sarkar D; Yang JC; Gupta AS; Lopina ST
    J Biomed Mater Res A; 2009 Jul; 90(1):263-71. PubMed ID: 18496869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on structure-property elucidation of P3/4HB and PEG-based block polyurethanes.
    Li G; Liu Y; Li D; Zhang L; Xu K
    J Biomed Mater Res A; 2012 Sep; 100(9):2319-29. PubMed ID: 22529029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.