BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24906764)

  • 21. The effects of soft segment structure on the fatigue crack propagation of model polyurethanes.
    Kim HJ; Benson RS
    Biomed Mater Eng; 1994; 4(3):171-85. PubMed ID: 7950866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface Response Methodology-Based Mixture Design to Study the Influence of Polyol Blend Composition on Polyurethanes' Properties.
    Arévalo-Alquichire S; Morales-Gonzalez M; Diaz LE; Valero MF
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30081493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks.
    Cao X; Wang Y; Zhang L
    Macromol Biosci; 2005 Sep; 5(9):863-71. PubMed ID: 16143996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking.
    Cellesi F; Tirelli N; Hubbell JA
    Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications.
    Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S
    Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable thermoplastic polyurethanes incorporating polyhedral oligosilsesquioxane.
    Knight PT; Lee KM; Qin H; Mather PT
    Biomacromolecules; 2008 Sep; 9(9):2458-67. PubMed ID: 18698847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation.
    Szelest-Lewandowska A; Masiulanis B; Klocke A; Glasmacher B
    J Biomater Appl; 2003 Jan; 17(3):221-36. PubMed ID: 12614086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in synthetic bioelastomers.
    Shi R; Chen D; Liu Q; Wu Y; Xu X; Zhang L; Tian W
    Int J Mol Sci; 2009 Nov; 10(10):4223-4256. PubMed ID: 20057942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Starch and castor oil mutually modified, cross-linked polyurethane for improving the controlled release of urea.
    Tian H; Li Z; Lu P; Wang Y; Jia C; Wang H; Liu Z; Zhang M
    Carbohydr Polym; 2021 Jan; 251():117060. PubMed ID: 33142612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biobased polyurethanes prepared from different vegetable oils.
    Zhang C; Madbouly SA; Kessler MR
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1226-33. PubMed ID: 25541678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.
    Xia Y; Larock RC
    Macromol Rapid Commun; 2011 Sep; 32(17):1331-7. PubMed ID: 25867899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.
    Arévalo F; Uscategui YL; Diaz L; Cobo M; Valero MF
    J Biomater Appl; 2016 Nov; 31(5):708-720. PubMed ID: 27789793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers.
    Liu C; Gu Y; Qian Z; Fan L; Li J; Chao G; Tu M; Jia W
    J Biomed Mater Res A; 2005 Nov; 75(2):465-71. PubMed ID: 16094664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platelet adhesion and human umbilical vein endothelial cell cytocompatibility of biodegradable segmented polyurethanes prepared with 4,4'-methylene bis(cyclohexyl isocyanate), poly(caprolactone) diol and butanediol or dithioerythritol as chain extenders.
    Chan-Chan LH; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Rath R; Phelps EA; García AJ; San Román Del Barrio J; Parra J; Merhi Y; Tabrizian M
    J Biomater Appl; 2013 Aug; 28(2):270-7. PubMed ID: 22684514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications.
    Morral-Ruíz G; Melgar-Lesmes P; García ML; Solans C; García-Celma MJ
    Int J Pharm; 2014 Jan; 461(1-2):1-13. PubMed ID: 24275445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility.
    Pereira IH; Ayres E; Patrício PS; Góes AM; Gomide VS; Junior EP; Oréfice RL
    Acta Biomater; 2010 Aug; 6(8):3056-66. PubMed ID: 20193783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradable polyurethane cytocompatibility to fibroblasts and staphylococci.
    Harris LG; Gorna K; Gogolewski S; Richards RG
    J Biomed Mater Res A; 2006 May; 77(2):304-12. PubMed ID: 16400656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutathione-responsive biodegradable poly(urea-urethane)s containing L-cystine-based chain extender.
    Wang J; Zheng Z; Chen L; Tu X; Wang X
    J Biomater Sci Polym Ed; 2013; 24(7):831-48. PubMed ID: 23594072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.
    Dawlee S; Jayabalan M
    J Biomater Appl; 2015 May; 29(10):1329-42. PubMed ID: 25542732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.