These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24906767)

  • 1. 1D and 2D NMR of nanocellulose in aqueous colloidal suspensions.
    Jiang F; Dallas JL; Ahn BK; Hsieh YL
    Carbohydr Polym; 2014 Sep; 110():360-6. PubMed ID: 24906767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge.
    Han J; Zhou C; Wu Y; Liu F; Wu Q
    Biomacromolecules; 2013 May; 14(5):1529-40. PubMed ID: 23544667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration.
    Ding Q; Zeng J; Wang B; Tang D; Chen K; Gao W
    Carbohydr Polym; 2019 Mar; 207():44-51. PubMed ID: 30600026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional Freezing of Nanocellulose Dispersions Aligns the Rod-Like Particles and Produces Low-Density and Robust Particle Networks.
    Munier P; Gordeyeva K; Bergström L; Fall AB
    Biomacromolecules; 2016 May; 17(5):1875-81. PubMed ID: 27071304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction.
    Cudjoe E; Younesi M; Cudjoe E; Akkus O; Rowan SJ
    Biomacromolecules; 2017 Apr; 18(4):1259-1267. PubMed ID: 28328202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose.
    Pawcenis D; Leśniak M; Szumera M; Sitarz M; Profic-Paczkowska J
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1996-2005. PubMed ID: 36208805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cilia-mimetic hairy surfaces based on end-immobilized nanocellulose colloidal rods.
    Lokanathan AR; Nykänen A; Seitsonen J; Johansson LS; Campbell J; Rojas OJ; Ikkala O; Laine J
    Biomacromolecules; 2013 Aug; 14(8):2807-13. PubMed ID: 23799635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-assembling Polysaccharide Nanocrystals and Nanofibers for Robust Chiral Iridescent Films.
    Xiong R; Singh A; Yu S; Zhang S; Lee H; Yingling YG; Nepal D; Bunning TJ; Tsukruk VV
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35345-35353. PubMed ID: 32640788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils.
    Gu J; Hsieh YL
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of cellulose nanofibrils with luminescent carbon dots.
    Junka K; Guo J; Filpponen I; Laine J; Rojas OJ
    Biomacromolecules; 2014 Mar; 15(3):876-81. PubMed ID: 24456129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.
    Kalita E; Nath BK; Deb P; Agan F; Islam MR; Saikia K
    Carbohydr Polym; 2015 May; 122():308-13. PubMed ID: 25817673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy.
    Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM
    Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1D "Spikelet" Projections from Heteronuclear 2D NMR Data-Permitting 1D Chemometrics While Preserving 2D Dispersion.
    Tabatabaei Anaraki M; Bermel W; Dutta Majumdar R; Soong R; Simpson M; Monnette M; Simpson AJ
    Metabolites; 2019 Jan; 9(1):. PubMed ID: 30654443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and Robust Nanocellulose Width Estimation Using Turbidimetry.
    Shimizu M; Saito T; Nishiyama Y; Iwamoto S; Yano H; Isogai A; Endo T
    Macromol Rapid Commun; 2016 Oct; 37(19):1581-1586. PubMed ID: 27511960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.