These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 24906867)

  • 41. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.
    Ebin B; Petranikova M; Steenari BM; Ekberg C
    Waste Manag; 2016 May; 51():157-167. PubMed ID: 26547409
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration and characterization of LiNi
    Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z
    Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimized Morphology and Tuning the Mn
    Lin Y; Välikangas J; Sliz R; Molaiyan P; Hu T; Lassi U
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LiNi0.5Mn1.5O4 Cathodes for Lithium Ion Batteries: A Review.
    Wang H
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6883-90. PubMed ID: 26716260
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.
    Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH
    Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strategic exploration of battery waste management: A game-theoretic approach.
    Kaushal RK; Nema AK; Chaudhary J
    Waste Manag Res; 2015 Jul; 33(7):681-9. PubMed ID: 26060193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Electrolytic Zn-MnO
    Chao D; Zhou W; Ye C; Zhang Q; Chen Y; Gu L; Davey K; Qiao SZ
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7823-7828. PubMed ID: 30972886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A core-shell structured LiNi
    Deng Y; Mou J; He L; Xie F; Zheng Q; Xu C; Lin D
    Dalton Trans; 2018 Jan; 47(2):367-375. PubMed ID: 29215669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unravelling the Role of Electrochemically Active FePO
    Xiao B; Liu J; Sun Q; Wang B; Banis MN; Zhao D; Wang Z; Li R; Cui X; Sham TK; Sun X
    Adv Sci (Weinh); 2015 May; 2(5):1500022. PubMed ID: 27980938
    [No Abstract]   [Full Text] [Related]  

  • 52. LiNi
    Wang B; Liu J; Ock JY; Motoyoshi R; Li S; Ueno K; Dokko K; Tsuzuki S; Watanabe M
    ACS Omega; 2022 May; 7(21):17732-17740. PubMed ID: 35664591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.
    Terazono A; Oguchi M; Iino S; Mogi S
    Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of a High-Capacity α-Fe
    Wei S; Di Lecce D; Messini D'Agostini R; Hassoun J
    ACS Appl Energy Mater; 2021 Aug; 4(8):8340-8349. PubMed ID: 34476350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An innovative approach to recover the metal values from spent lithium-ion batteries.
    Barik SP; Prabaharan G; Kumar B
    Waste Manag; 2016 May; 51():222-226. PubMed ID: 26553316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNi
    Xiao Z; Wang R; Li Y; Sun Y; Fan S; Xiong K; Zhang H; Qian Z
    Front Chem; 2019; 7():591. PubMed ID: 31508412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.
    Maryam Sadeghi S; Vanpeteghem G; Neto IFF; Soares HMVM
    Waste Manag; 2017 Feb; 60():696-705. PubMed ID: 28007473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.
    Wang X; Gaustad G; Babbitt CW
    Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.