These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24907372)

  • 1. The energy costs of wading in water.
    Halsey LG; Tyler CJ; Kuliukas AV
    Biol Open; 2014 Jun; 3(7):571-4. PubMed ID: 24907372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wading through water: effects of water depth and speed on the drag and kinematics of walking Chilean flamingos, Phoenicopterus chilensis.
    Palecek AM; Novak MV; Blob RW
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34505127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic costs and rating of perceived exertion during backward walking in water and on dry land.
    Masumoto K; Hamada A; Tomonaga HO; Kodama K; Amamoto Y; Nishizaki Y; Hotta N
    Res Sports Med; 2015; 23(1):27-36. PubMed ID: 25630244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipedal and quadrupedal locomotion in chimpanzees.
    Pontzer H; Raichlen DA; Rodman PS
    J Hum Evol; 2014 Jan; 66():64-82. PubMed ID: 24315239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative cost of bent-hip bent-knee walking is reduced in water.
    Kuliukas AV; Milne N; Fournier P
    Homo; 2009; 60(6):479-88. PubMed ID: 19853850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theory on the evolution of the habitual orthograde human bipedalism--the "Amphibische Generalistentheorie".
    Niemitz C
    Anthropol Anz; 2002 Mar; 60(1):3-66. PubMed ID: 12058577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal speeds for walking and running, and walking on a moving walkway.
    Srinivasan M
    Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic costs and heart rate responses to treadmill walking in water at different depths and temperatures.
    Gleim GW; Nicholas JA
    Am J Sports Med; 1989; 17(2):248-52. PubMed ID: 2757128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energetic cost of locomotion: humans and primates compared to generalized endotherms.
    Steudel-Numbers KL
    J Hum Evol; 2003 Feb; 44(2):255-62. PubMed ID: 12662945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wading for food the driving force of the evolution of bipedalism?
    Kuliukas A
    Nutr Health; 2002; 16(4):267-89. PubMed ID: 12617279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic costs of bipedal and quadrupedal walking in Japanese macaques.
    Nakatsukasa M; Ogihara N; Hamada Y; Goto Y; Yamada M; Hirakawa T; Hirasaki E
    Am J Phys Anthropol; 2004 Jul; 124(3):248-56. PubMed ID: 15197820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of water level changes and wading bird abundance on the foraging behaviour of blacknecked storks Ephippiorhynchus asiaticus in Dudwa National Park, India.
    Maheswaran G; Rahmani AR
    J Biosci; 2001 Sep; 26(3):373-82. PubMed ID: 11568483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.
    Masumoto K; Nishizaki Y; Hamada A
    Gait Posture; 2013 Jun; 38(2):335-9. PubMed ID: 23332190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates.
    Seethapathi N; Srinivasan M
    Biol Lett; 2015 Sep; 11(9):20150486. PubMed ID: 26382072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of water depth on energy expenditure during aquatic walking in people post stroke.
    Lim H; Azurdia D; Jeng B; Jung T
    Physiother Res Int; 2018 Jul; 23(3):e1717. PubMed ID: 29749670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait-specific energetics contributes to economical walking and running in emus and ostriches.
    Watson RR; Rubenson J; Coder L; Hoyt DF; Propert MW; Marsh RL
    Proc Biol Sci; 2011 Jul; 278(1714):2040-6. PubMed ID: 21123267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D; Fukuoka Y; Maeda T; Horiuchi M
    J Physiol Anthropol; 2018 Jun; 37(1):18. PubMed ID: 29914562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bipedal animals, and their differences from humans.
    Alexander RM
    J Anat; 2004 May; 204(5):321-30. PubMed ID: 15198697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?
    Preuschoft H
    J Anat; 2004 May; 204(5):363-84. PubMed ID: 15198701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.