These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
543 related articles for article (PubMed ID: 24907597)
1. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Gangadhar KN; Adhikari K; Srichana T Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597 [TBL] [Abstract][Full Text] [Related]
2. Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. Usman F; Khalil R; Ul-Haq Z; Nakpheng T; Srichana T AAPS PharmSciTech; 2018 Jul; 19(5):2077-2086. PubMed ID: 29691753 [TBL] [Abstract][Full Text] [Related]
3. Amphotericin B Loaded Nanostructured Lipid Carriers for Parenteral Delivery: Characterization, Antifungal and In vitro Toxicity Assessment. Nimtrakul P; Tiyaboonchai W; Lamlertthon S Curr Drug Deliv; 2019; 16(7):645-653. PubMed ID: 31362675 [TBL] [Abstract][Full Text] [Related]
4. Biodistribution and histopathology studies of amphotericin B sodium deoxycholate sulfate formulation following intratracheal instillation in rat models. Usman F; Nopparat J; Javed I; Srichana T Drug Deliv Transl Res; 2020 Feb; 10(1):59-69. PubMed ID: 31368043 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical properties and antifungal activity of amphotericin B incorporated in cholesteryl carbonate esters. Chuealee R; Wiedmann TS; Srichana T J Pharm Sci; 2011 May; 100(5):1727-35. PubMed ID: 21374610 [TBL] [Abstract][Full Text] [Related]
6. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Hussain A; Samad A; Singh SK; Ahsan MN; Haque MW; Faruk A; Ahmed FJ Drug Deliv; 2016; 23(2):642-47. PubMed ID: 25013957 [TBL] [Abstract][Full Text] [Related]
7. A novel formulation of solubilised amphotericin B designed for ophthalmic use. Serrano DR; Ruiz-Saldaña HK; Molero G; Ballesteros MP; Torrado JJ Int J Pharm; 2012 Nov; 437(1-2):80-2. PubMed ID: 22890190 [TBL] [Abstract][Full Text] [Related]
8. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Zia Q; Khan AA; Swaleha Z; Owais M Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804 [TBL] [Abstract][Full Text] [Related]
9. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Kaur K; Kumar P; Kush P Biomed Pharmacother; 2020 Aug; 128():110297. PubMed ID: 32480227 [TBL] [Abstract][Full Text] [Related]
10. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Hussain A; Singh VK; Singh OP; Shafaat K; Kumar S; Ahmad FJ Drug Deliv; 2016 Oct; 23(8):3101-3110. PubMed ID: 27854145 [TBL] [Abstract][Full Text] [Related]
11. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934 [TBL] [Abstract][Full Text] [Related]
12. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565 [TBL] [Abstract][Full Text] [Related]
13. Polysorbate Surfactants as Drug Carriers: Tween 20-Amphotericin B Conjugates as Anti-Fungal and Anti-Leishmanial Agents. Ravichandran V; Kesavan V; Cojean S; Loiseau PM; Jayakrishnan A Curr Drug Deliv; 2018; 15(7):1028-1037. PubMed ID: 29732967 [TBL] [Abstract][Full Text] [Related]
14. Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B. Alvarez C; Shin DH; Kwon GS Pharm Res; 2016 Sep; 33(9):2098-106. PubMed ID: 27198671 [TBL] [Abstract][Full Text] [Related]
15. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related]
16. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Jansook P; Pichayakorn W; Ritthidej GC Drug Dev Ind Pharm; 2018 Oct; 44(10):1693-1700. PubMed ID: 29936874 [TBL] [Abstract][Full Text] [Related]
17. Pharmacologically Safe Nanomicelles of Amphotericin B With Lipids: Nuclear Magnetic Resonance and Molecular Docking Approach. Usman F; Ul-Haq Z; Khalil R; Tinpun K; Srichana T J Pharm Sci; 2017 Dec; 106(12):3574-3582. PubMed ID: 28847478 [TBL] [Abstract][Full Text] [Related]
18. Efficacy and toxicity evaluation of new amphotericin B micelle systems for brain fungal infections. Moreno-Rodríguez AC; Torrado-Durán S; Molero G; García-Rodríguez JJ; Torrado-Santiago S Int J Pharm; 2015 Oct; 494(1):17-22. PubMed ID: 26256151 [TBL] [Abstract][Full Text] [Related]
19. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279 [TBL] [Abstract][Full Text] [Related]
20. In-vitro and in-vivo evaluation of a new amphotericin B emulsion-based delivery system. Tabosa Do Egito ES; Appel M; Fessi H; Barratt G; Puisieux F; Devissaguet JP J Antimicrob Chemother; 1996 Sep; 38(3):485-97. PubMed ID: 8889723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]