These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24907671)

  • 1. Numerical modelling of the mechanical behaviour of an osteon with microcracks.
    Giner E; Arango C; Vercher A; Javier Fuenmayor F
    J Mech Behav Biomed Mater; 2014 Sep; 37():109-24. PubMed ID: 24907671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation.
    Korsa R; Lukes J; Sepitka J; Mares T
    J Biomech Eng; 2015 Aug; 137(8):081002. PubMed ID: 25901781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural mechanical study of a transverse osteon under compressive loading: The role of fiber reinforcement and explanation of some geometrical and mechanical microscopic properties.
    De Micheli PO; Witzel U
    J Biomech; 2011 May; 44(8):1588-92. PubMed ID: 21397233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study.
    Cen HP; Wu XG; Yu WL; Liu QZ; Jia YM
    Acta Bioeng Biomech; 2016; 18(1):3-10. PubMed ID: 27149885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis on multi-toughening mechanism of microstructure of osteon.
    Yin D; Chen B; Lin S
    J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haversian cortical bone model with many radial microcracks: an elastic analytic solution.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh M
    Med Eng Phys; 2007 Jul; 29(6):708-17. PubMed ID: 17055321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the basic multicellular unit and lamellar thickness on osteonal fatigue life.
    Pellegrino G; Roman M; Fritton JC
    J Biomech; 2017 Jul; 60():116-123. PubMed ID: 28711163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fiber orientation and geometry effects on the mechanical properties of secondary osteons.
    Pidaparti RM; Burr DB
    J Biomech; 1992 Aug; 25(8):869-80. PubMed ID: 1639831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.
    Hage IS; Hamade RF
    J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction.
    Nobakhti S; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2014 Jan; 29():235-51. PubMed ID: 24113298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An elastic compound tube model for a single osteon.
    Braidotti P; Branca FP; Sciubba E; Stagni L
    J Biomech; 1995 Apr; 28(4):439-44. PubMed ID: 7738052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteon interfacial strength and histomorphometry of equine cortical bone.
    Bigley RF; Griffin LV; Christensen L; Vandenbosch R
    J Biomech; 2006; 39(9):1629-40. PubMed ID: 16019009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical modelling of cancellous bone damage using an orthotropic failure criterion and tissue elastic properties as a function of the mineral content and microporosity.
    Megías R; Vercher-Martínez A; Belda R; Peris JL; Larrainzar-Garijo R; Giner E; Fuenmayor FJ
    Comput Methods Programs Biomed; 2022 Jun; 219():106764. PubMed ID: 35366593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric determinants to cement line debonding and osteonal lamellae failure in osteon pushout tests.
    Dong XN; Guo XE
    J Biomech Eng; 2004 Jun; 126(3):387-90. PubMed ID: 15341177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanics modeling of Haversian cortical bone properties.
    Hogan HA
    J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM.
    Gustafsson A; Khayyeri H; Wallin M; Isaksson H
    J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.