These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24907784)

  • 1. Effect of fracture compliance on wave propagation within a fluid-filled fracture.
    Nakagawa S; Korneev VA
    J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poroelastic modeling of seismic boundary conditions across a fracture.
    Nakagawa S; Schoenberg MA
    J Acoust Soc Am; 2007 Aug; 122(2):831-47. PubMed ID: 17672634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface.
    Vashishth AK; Gupta V
    J Acoust Soc Am; 2011 Jun; 129(6):3690-701. PubMed ID: 21682394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.
    Nick HM; Paluszny A; Blunt MJ; Matthai SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056301. PubMed ID: 22181492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical simulation of electroacoustic borehole logging in a fluid-saturated porous formation.
    Hu H; Guan W; Harris JM
    J Acoust Soc Am; 2007 Jul; 122(1):135-45. PubMed ID: 17614473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the transient solutions of three acoustic wave equations: van Wijngaarden's equation, Stokes' equation and the time-dependent diffusion equation.
    Buckingham MJ
    J Acoust Soc Am; 2008 Oct; 124(4):1909-20. PubMed ID: 19062830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of dynamic seismic responses to viscous fluid of digitized three-dimensional Berea sandstones with a coupled finite-difference method.
    Zhang Y; Toksöz MN
    J Acoust Soc Am; 2012 Aug; 132(2):630-40. PubMed ID: 22894185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture.
    Nakagawa S; Pride SR; Nihei KT
    J Acoust Soc Am; 2019 Sep; 146(3):1705. PubMed ID: 31590557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid.
    van Dalen KN; Drijkoningen GG; Smeulders DM
    J Acoust Soc Am; 2010 Apr; 127(4):2240-51. PubMed ID: 20370005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral properties of the interference head wave.
    Choi JW; Dahl PH
    J Acoust Soc Am; 2007 Jul; 122(1):146-50. PubMed ID: 17614474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using dispersion equation for orthotropic media to model antiplane coherent wave propagation in cracked solids.
    Caleap M; Aristégui C; Poncelet O
    J Acoust Soc Am; 2013 Jan; 133(1):17-24. PubMed ID: 23297879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of wave dispersion along cylindrical structures using the spectral method.
    Karpfinger F; Gurevich B; Bakulin A
    J Acoust Soc Am; 2008 Aug; 124(2):859-65. PubMed ID: 18681578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media.
    Müller TM; Sahay PN
    J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.
    Talmadge CL; Waxler R; Di X; Gilbert KE; Kulichkov S
    J Acoust Soc Am; 2008 Oct; 124(4):1956-62. PubMed ID: 19062835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.