These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24907791)

  • 21. Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3 to 1.0 MHz.
    Lee KI; Humphrey VF; Kim BN; Yoon SW
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2553-8. PubMed ID: 17550154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Squirt flow in porous media saturated by Maxwell-type non-Newtonian fluids.
    Solazzi SG; Quintal B; Holliger K
    Phys Rev E; 2021 Feb; 103(2-1):023101. PubMed ID: 33736057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound speed in water-saturated glass beads as a function of frequency and porosity.
    Argo TF; Guild MD; Wilson PS; Schröter M; Radin C; Swinney HL
    J Acoust Soc Am; 2011 Apr; 129(4):EL101-7. PubMed ID: 21476615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A porous medium model for mud.
    Chotiros NP
    J Acoust Soc Am; 2021 Jan; 149(1):629. PubMed ID: 33514181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An illustration of the effect of neglecting poroelastic physics of water-saturated glass beads in a laboratory phase speed inference process.
    Venegas GR; Wilson PS
    J Acoust Soc Am; 2019 Aug; 146(2):1326. PubMed ID: 31472533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Velocity dispersion in water-saturated granular sediment.
    Stoll RD
    J Acoust Soc Am; 2002 Feb; 111(2):785-93. PubMed ID: 11863180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wettability effect on wave propagation in saturated porous medium.
    Li JX; Rezaee R; Müller TM
    J Acoust Soc Am; 2020 Feb; 147(2):911. PubMed ID: 32113257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wave equations for porous media described by the Biot model.
    Chandrasekaran SN; Näsholm SP; Holm S
    J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for wave propagation in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2016 Feb; 139(2):693-702. PubMed ID: 26936553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ measurements of velocity dispersion and attenuation in New Jersey Shelf sediments.
    Turgut A; Yamamoto T
    J Acoust Soc Am; 2008 Sep; 124(3):EL122-7. PubMed ID: 19045553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ sediment dispersion estimates in the presence of discrete layers and gradients.
    Holland CW; Dettmer J
    J Acoust Soc Am; 2013 Jan; 133(1):50-61. PubMed ID: 23297882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An effective density fluid model for acoustic propagation in sediments derived from Biot theory.
    Williams KL
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2276-81. PubMed ID: 11757917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuation and group speed in water-saturated granular materials at MHz frequencies.
    Hare J; Hay AE
    J Acoust Soc Am; 2018 May; 143(5):2744. PubMed ID: 29857714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements.
    Bonomo AL; Isakson MJ
    J Acoust Soc Am; 2018 Apr; 143(4):2501. PubMed ID: 29716256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of tortuosity, permeability, and pore radius of water-saturated unconsolidated glass beads and sands.
    Kimura M
    J Acoust Soc Am; 2018 May; 143(5):3154. PubMed ID: 29857715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamic pressure view cell for acoustic stimulation of fluids--Micro-bubble generation and fluid movement in porous media.
    Stewart RA; Shaw JM
    Rev Sci Instrum; 2015 Sep; 86(9):095101. PubMed ID: 26429474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic acoustoelastic testing of weakly pre-loaded unconsolidated water-saturated glass beads.
    Renaud G; Callé S; Defontaine M
    J Acoust Soc Am; 2010 Dec; 128(6):3344-54. PubMed ID: 21218868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of moisture on compressional and shear wave speeds in unconsolidated granular material.
    Shields FD; Sabatier JM; Wang M
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):1998-2004. PubMed ID: 11108338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adding thermal and granularity effects to the effective density fluid model.
    Williams KL
    J Acoust Soc Am; 2013 May; 133(5):EL431-7. PubMed ID: 23656105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.