These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24907817)

  • 21. Extent of lateralization at large interaural time differences in simulated electric hearing and bilateral cochlear implant users.
    Baumgärtel RM; Hu H; Kollmeier B; Dietz M
    J Acoust Soc Am; 2017 Apr; 141(4):2338. PubMed ID: 28464641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal weighting of binaural cues revealed by detection of dynamic interaural differences in high-rate Gabor click trains.
    Stecker GC; Brown AD
    J Acoust Soc Am; 2010 May; 127(5):3092-103. PubMed ID: 21117758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of interaural cues and their contribution to the lateralisation of Mongolian gerbils (Meriones unguiculatus).
    Tolnai S; Beutelmann R; Klump GM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 May; 204(5):435-448. PubMed ID: 29476321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear.
    Eric Lupo J; Koka K; Thornton JL; Tollin DJ
    Hear Res; 2011 Feb; 272(1-2):30-41. PubMed ID: 21073935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase locking of auditory-nerve fibers to the envelopes of high-frequency sounds: implications for sound localization.
    Dreyer A; Delgutte B
    J Neurophysiol; 2006 Nov; 96(5):2327-41. PubMed ID: 16807349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the influence of interaural differences on temporal perception of noise bursts of different durations.
    Schimmel O; Kohlrausch A
    J Acoust Soc Am; 2008 Feb; 123(2):986-97. PubMed ID: 18247901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weighting of spatial and spectro-temporal cues for auditory scene analysis by human listeners.
    Bremen P; Middlebrooks JC
    PLoS One; 2013; 8(3):e59815. PubMed ID: 23527271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences.
    Joris PX; Yin TC
    J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Context effects in the discriminability of spatial cues.
    Maier JK; McAlpine D; Klump GM; Pressnitzer D
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):319-28. PubMed ID: 20033247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli.
    Hu H; Ewert SD; McAlpine D; Dietz M
    J Acoust Soc Am; 2017 Mar; 141(3):1862. PubMed ID: 28372072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human interaural time difference thresholds for sine tones: the high-frequency limit.
    Brughera A; Dunai L; Hartmann WM
    J Acoust Soc Am; 2013 May; 133(5):2839-55. PubMed ID: 23654390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.
    Altmann CF; Ueda R; Bucher B; Furukawa S; Ono K; Kashino M; Mima T; Fukuyama H
    Neuroimage; 2017 Oct; 159():185-194. PubMed ID: 28756239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Channel Interaction and Current Level Affect Across-Electrode Integration of Interaural Time Differences in Bilateral Cochlear-Implant Listeners.
    Egger K; Majdak P; Laback B
    J Assoc Res Otolaryngol; 2016 Feb; 17(1):55-67. PubMed ID: 26377826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaural spectral asymmetry and sensitivity to interaural time differences.
    Brown CA; Yost WA
    J Acoust Soc Am; 2011 Nov; 130(5):EL358-64. PubMed ID: 22088041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binaural-cue Weighting and Training-Induced Reweighting Across Frequencies.
    Klingel M; Laback B
    Trends Hear; 2022; 26():23312165221104872. PubMed ID: 35791626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual sensitivity to high-frequency interaural time differences created by rustling sounds.
    Ewert SD; Kaiser K; Kernschmidt L; Wiegrebe L
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):131-43. PubMed ID: 22124890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trading of interaural differences in high-rate Gabor click trains.
    Stecker GC
    Hear Res; 2010 Sep; 268(1-2):202-12. PubMed ID: 20547218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human cortical sensitivity to interaural time difference in high-frequency sounds.
    Salminen NH; Altoè A; Takanen M; Santala O; Pulkki V
    Hear Res; 2015 May; 323():99-106. PubMed ID: 25668126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.