These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24907817)

  • 41. Binaural hearing in children using Gaussian enveloped and transposed tones.
    Ehlers E; Kan A; Winn MB; Stoelb C; Litovsky RY
    J Acoust Soc Am; 2016 Apr; 139(4):1724. PubMed ID: 27106319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaural time discrimination of envelopes carried on high-frequency tones as a function of level and interaural carrier mismatch.
    Blanks DA; Buss E; Grose JH; Fitzpatrick DC; Hall JW
    Ear Hear; 2008 Oct; 29(5):674-83. PubMed ID: 18596646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of target and interferer frequency on across-frequency binaural interference of interaural-level-difference sensitivity.
    Rosen B; Goupell MJ
    J Acoust Soc Am; 2022 Feb; 151(2):924. PubMed ID: 35232088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lateralization of noise-burst trains based on onset and ongoing interaural delays.
    Freyman RL; Balakrishnan U; Zurek PM
    J Acoust Soc Am; 2010 Jul; 128(1):320-31. PubMed ID: 20649227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Asymmetric transfer of sound localization learning between indistinguishable interaural cues.
    Sand A; Nilsson ME
    Exp Brain Res; 2014 Jun; 232(6):1707-16. PubMed ID: 24566800
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binaural interference in lateralization thresholds for interaural time and level differences.
    Heller LM; Richards VM
    J Acoust Soc Am; 2010 Jul; 128(1):310-9. PubMed ID: 20649226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exploring binaural hearing in gerbils (Meriones unguiculatus) using virtual headphones.
    Tolnai S; Beutelmann R; Klump GM
    PLoS One; 2017; 12(4):e0175142. PubMed ID: 28394906
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Behavioral sensitivity to interaural time differences in the rabbit.
    Ebert CS; Blanks DA; Patel MR; Coffey CS; Marshall AF; Fitzpatrick DC
    Hear Res; 2008 Jan; 235(1-2):134-42. PubMed ID: 18093767
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Horizontal sound localization in cochlear implant users with a contralateral hearing aid.
    Veugen LCE; Hendrikse MME; van Wanrooij MM; Agterberg MJH; Chalupper J; Mens LHM; Snik AFM; John van Opstal A
    Hear Res; 2016 Jun; 336():72-82. PubMed ID: 27178443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discrimination thresholds for interaural-time differences and interaural-level differences in naïve listeners: Sex differences and learning.
    Wright BA; Dai H
    Hear Res; 2022 Oct; 424():108599. PubMed ID: 36063641
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulation enhancement in the electrical signal improves perception of interaural time differences with bimodal stimulation.
    Francart T; Lenssen A; Wouters J
    J Assoc Res Otolaryngol; 2014 Aug; 15(4):633-47. PubMed ID: 24890714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of pause, attack, and decay duration of the ongoing envelope on sound lateralization.
    Dietz M; Klein-Hennig M; Hohmann V
    J Acoust Soc Am; 2015 Feb; 137(2):EL137-43. PubMed ID: 25698041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binaural weighting of monaural spectral cues for sound localization.
    Macpherson EA; Sabin AT
    J Acoust Soc Am; 2007 Jun; 121(6):3677-88. PubMed ID: 17552719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Binaural cues provide for a release from informational masking.
    Tolnai S; Dolležal LV; Klump GM
    Behav Neurosci; 2015 Oct; 129(5):589-98. PubMed ID: 26413722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors affecting the use of envelope interaural time differences in reverberation.
    Monaghan JJ; Krumbholz K; Seeber BU
    J Acoust Soc Am; 2013 Apr; 133(4):2288-300. PubMed ID: 23556596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuronal sensitivity to interaural time differences in the sound envelope in the auditory cortex of the pallid bat.
    Lohuis TD; Fuzessery ZM
    Hear Res; 2000 May; 143(1-2):43-57. PubMed ID: 10771183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Rapid Decline in Interaural-Time-Difference Sensitivity for Pure Tones Can Be Explained by Peripheral Filtering.
    Goupell MJ; Stecker GC; Williams BT; Bilokon A; Tollin DJ
    J Assoc Res Otolaryngol; 2024 Aug; 25(4):377-385. PubMed ID: 38769250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.