These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 24907835)

  • 1. Selection of spectral compressive operator for vector Taylor series-based model adaptation in noisy environments.
    Baek S; Kang HG
    J Acoust Soc Am; 2014 Jun; 135(6):EL284-90. PubMed ID: 24907835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory-model based robust feature selection for speech recognition.
    Koniaris C; Kuropatwinski M; Kleijn WB
    J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation and enhancement of lung sound recognition system in two real noisy environments.
    Chang GC; Lai YF
    Comput Methods Programs Biomed; 2010 Feb; 97(2):141-50. PubMed ID: 19615782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation frequency features for phoneme recognition in noisy speech.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2009 Jan; 125(1):EL8-12. PubMed ID: 19173383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech.
    Lee SM; Choi JY
    J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.
    Schädler M; Meyer BT; Kollmeier B
    J Acoust Soc Am; 2012 May; 131(5):4134-51. PubMed ID: 22559385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the relationship between spectral and cepstral measures of voice and the Voice Handicap Index (VHI).
    Awan SN; Roy N; Cohen SM
    J Voice; 2014 Jul; 28(4):430-9. PubMed ID: 24698884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow-band autocorrelation function features for the automatic recognition of acoustic environments.
    Valero X; Alías F
    J Acoust Soc Am; 2013 Jul; 134(1):880-90. PubMed ID: 23862894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech.
    Lee JW; Choi JY; Kang HG
    J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.
    Jafari A; Almasganj F; Bidhendi MN
    Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal envelope compensation for robust phoneme recognition using modulation spectrum.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2010 Dec; 128(6):3769-80. PubMed ID: 21218908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating dysphonia severity in continuous speech: application of a multi-parameter spectral/cepstral model.
    Awan SN; Roy N; Dromey C
    Clin Linguist Phon; 2009 Nov; 23(11):825-41. PubMed ID: 19891523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of vowel recognition with cochlear implant simulations.
    Liu C; Fu QJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):74-81. PubMed ID: 17260858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.