These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24907843)

  • 1. Sound pressure around dipole source above porous surface.
    Prezelj J; Steblaj P; Cudina M
    J Acoust Soc Am; 2014 Jun; 135(6):EL338-43. PubMed ID: 24907843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the energy and the reflection angle of the sound reflected by a porous material.
    Dragonetti R; Napolitano M; Romano RA
    J Acoust Soc Am; 2019 Jan; 145(1):489. PubMed ID: 30710957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters.
    Krylov VV
    Ultrasonics; 2016 Jul; 69():279-84. PubMed ID: 26851995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vortex sound under the influence of a piecewise porous material on an infinite rigid plane.
    Lau CK; Tang SK
    J Acoust Soc Am; 2007 Nov; 122(5):2542-50. PubMed ID: 18189545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interior and exterior sound field control using general two-dimensional first-order sources.
    Poletti MA; Abhayapala TD
    J Acoust Soc Am; 2011 Jan; 129(1):234-44. PubMed ID: 21303006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the resistivity of porous materials with an alternating air-flow method.
    Dragonetti R; Ianniello C; Romano RA
    J Acoust Soc Am; 2011 Feb; 129(2):753-64. PubMed ID: 21361434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exact frequency-domain solution of the sound radiated from the rotating dipole point source.
    Mao Y; Gu Y; Qi D; Tang H
    J Acoust Soc Am; 2012 Sep; 132(3):1294-302. PubMed ID: 22978857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of sound scattering using near-field pressure and particle velocity measurements.
    Richard A; Fernández Comesaña D; Brunskog J; Jeong CH; Fernandez-Grande E
    J Acoust Soc Am; 2019 Oct; 146(4):2404. PubMed ID: 31671980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dipole loudspeaker with a balanced directivity pattern.
    Mellow T; Kärkkäinen L
    J Acoust Soc Am; 2010 Nov; 128(5):2749-57. PubMed ID: 21110570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave field synthesis of a virtual source located in proximity to a loudspeaker array.
    Lee JM; Choi JW; Kim YH
    J Acoust Soc Am; 2013 Sep; 134(3):2106-17. PubMed ID: 23967941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound propagation above a porous road surface with extended reaction by boundary element method.
    Anfosso-Lédée F; Dangla P; Bérengier M
    J Acoust Soc Am; 2007 Aug; 122(2):731-6. PubMed ID: 17672623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optoacoustic point source for acoustic scale model measurements.
    Bolaños JG; Pulkki V; Karppinen P; Hæggström E
    J Acoust Soc Am; 2013 Apr; 133(4):EL221-7. PubMed ID: 23556683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation of sound from a monopole source above an impedance-backed porous layer.
    Li KM; Liu S
    J Acoust Soc Am; 2012 Jun; 131(6):4376-88. PubMed ID: 22712912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic centering of sources measured by surrounding spherical microphone arrays.
    Hagai IB; Pollow M; Vorländer M; Rafaely B
    J Acoust Soc Am; 2011 Oct; 130(4):2003-15. PubMed ID: 21973355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound absorption of porous metals at high sound pressure levels.
    Wang X; Peng F; Chang B
    J Acoust Soc Am; 2009 Aug; 126(2):EL55-61. PubMed ID: 19640016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct discrete complex image method for sound field evaluation above a non-locally reacting layer.
    Eser M; Gurbuz C; Brandão E; Marburg S
    J Acoust Soc Am; 2021 Nov; 150(5):3509. PubMed ID: 34852590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time near-field acoustic holography for continuously visualizing nonstationary acoustic fields.
    Thomas JH; Grulier V; Paillasseur S; Pascal JC; Le Roux JC
    J Acoust Soc Am; 2010 Dec; 128(6):3554-67. PubMed ID: 21218888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound penetration into a hard-backed rigid porous layer: theory and experiments.
    Tao H; Tong BN; Li KM
    J Acoust Soc Am; 2014 Aug; 136(2):475-84. PubMed ID: 25096082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.