BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24908009)

  • 1. Photolysis of CH₃CHO at 248 nm: evidence of triple fragmentation from primary quantum yield of CH₃ and HCO radicals and H atoms.
    Morajkar P; Bossolasco A; Schoemaecker C; Fittschen C
    J Chem Phys; 2014 Jun; 140(21):214308. PubMed ID: 24908009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolysis of CF3CH2CHO in the presence of O2 at 248 and 266 nm: quantum yields, products, and mechanism.
    Antiñolo M; Bettinelli C; Jain C; Dréan P; Lemoine B; Albaladejo J; Jiménez E; Fittschen C
    J Phys Chem A; 2013 Oct; 117(41):10661-70. PubMed ID: 24044593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolysis of 4-oxo-2-pentenal in the 190-460 nm region.
    Xiang B; Zhu L; Tang Y
    J Phys Chem A; 2007 Sep; 111(37):9025-33. PubMed ID: 17718460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV photofragmentation dynamics of acetaldehyde cations prepared by single-photon VUV ionization.
    Kapnas KM; McCaslin LM; Murray C
    Phys Chem Chem Phys; 2019 Jul; 21(26):14214-14225. PubMed ID: 30534766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: experimental and detailed kinetic modeling study.
    Dagaut P; Dayma G
    J Phys Chem A; 2006 Jun; 110(21):6608-16. PubMed ID: 16722672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: verification of roaming and triple fragmentation.
    Hung KC; Tsai PY; Li HK; Lin KC
    J Chem Phys; 2014 Feb; 140(6):064313. PubMed ID: 24527921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photolysis of CH3C(O)CH3 (248 nm, 266 nm), CH3C(O)C2H5 (248 nm) and CH3C(O)Br (248 nm): pressure dependent quantum yields of CH3 formation.
    Khamaganov V; Karunanandan R; Rodriguez A; Crowley JN
    Phys Chem Chem Phys; 2007 Aug; 9(31):4098-113. PubMed ID: 17687461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet photolysis of HCHO: absolute HCO quantum yields by direct detection of the HCO radical photoproduct.
    Carbajo PG; Smith SC; Holloway AL; Smith CA; Pope FD; Shallcross DE; Orr-Ewing AJ
    J Phys Chem A; 2008 Dec; 112(48):12437-48. PubMed ID: 18998660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure dependent photolysis quantum yields for CH3C(O)CH3 at 300 and 308 nm and at 298 and 228 K.
    Khamaganov VG; Crowley JN
    Phys Chem Chem Phys; 2013 Jul; 15(25):10500-9. PubMed ID: 23681110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms.
    Assali M; Fittschen C
    J Phys Chem A; 2022 Jul; 126(28):4585-4597. PubMed ID: 35793477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature Dependence Study of the Kinetics and Product Yields of the HO
    Hui AO; Fradet M; Okumura M; Sander SP
    J Phys Chem A; 2019 May; 123(17):3655-3671. PubMed ID: 30942073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of HO2 and OH formation mechanisms using FM and UV spectroscopy in dimethyl ether oxidation.
    Suzaki K; Tsuchiya K; Koshi M; Tezaki A
    J Phys Chem A; 2007 May; 111(19):3776-88. PubMed ID: 17455918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature and shock tube study of the reaction HCO+O2 using the photolysis of glyoxal as an efficient HCO source.
    Colberg M; Friedrichs G
    J Phys Chem A; 2006 Jan; 110(1):160-70. PubMed ID: 16392851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of the gas phase reaction CH3 + HO2.
    Sangwan M; Krasnoperov LN
    J Phys Chem A; 2013 Apr; 117(14):2916-23. PubMed ID: 23458562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross Section of OH Radical Overtone Transition near 7028 cm(-1) and Measurement of the Rate Constant of the Reaction of OH with HO2 Radicals.
    Assaf E; Fittschen C
    J Phys Chem A; 2016 Sep; 120(36):7051-9. PubMed ID: 27556141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature shock tube measurements of methyl radical decomposition.
    Vasudevan V; Hanson RK; Golden DM; Bowman CT; Davidson DF
    J Phys Chem A; 2007 May; 111(19):4062-72. PubMed ID: 17388279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.
    Yan C; Kocevska S; Krasnoperov LN
    J Phys Chem A; 2016 Aug; 120(31):6111-21. PubMed ID: 27397742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolysis of glycolaldehyde in the 280-340 nm region.
    Zhu C; Zhu L
    J Phys Chem A; 2010 Aug; 114(32):8384-90. PubMed ID: 20701346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HCO quantum yields in the photolysis of HC(O)C(O)H (glyoxal) between 290 and 420 nm.
    Feierabend KJ; Flad JE; Brown SS; Burkholder JB
    J Phys Chem A; 2009 Jul; 113(27):7784-94. PubMed ID: 19522522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodissociation of acetaldehyde and the absolute photoionization cross section of HCO.
    Shubert VA; Pratt ST
    J Phys Chem A; 2010 Oct; 114(42):11238-43. PubMed ID: 20504034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.