These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 24908016)

  • 1. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory.
    Yin H; Ma Y; Hao X; Mu J; Liu C; Yi Z
    J Chem Phys; 2014 Jun; 140(21):214315. PubMed ID: 24908016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.
    Demján T; Vörös M; Palummo M; Gali A
    J Chem Phys; 2014 Aug; 141(6):064308. PubMed ID: 25134572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.
    Rocca D; Lu D; Galli G
    J Chem Phys; 2010 Oct; 133(16):164109. PubMed ID: 21033777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation of optical spectra of water clusters with size from many-body Green's function theory.
    Wei M; Jin F; Chen T; Ma Y
    J Chem Phys; 2018 Jun; 148(22):224302. PubMed ID: 29907027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High accuracy many-body calculational approaches for excitations in molecules.
    Grossman JC; Rohlfing M; Mitas L; Louie SG; Cohen ML
    Phys Rev Lett; 2001 Jan; 86(3):472-5. PubMed ID: 11177858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Optoelectronic Properties of Silicon Nanoparticles: Excitation Energies, Sum Rules, and Tamm-Dancoff Approximation.
    Rocca D; Vörös M; Gali A; Galli G
    J Chem Theory Comput; 2014 Aug; 10(8):3290-8. PubMed ID: 26588298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules.
    Bruneval F; Hamed SM; Neaton JB
    J Chem Phys; 2015 Jun; 142(24):244101. PubMed ID: 26133404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.
    Faber C; Boulanger P; Attaccalite C; Duchemin I; Blase X
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130271. PubMed ID: 24516185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GW and Bethe-Salpeter study of small water clusters.
    Blase X; Boulanger P; Bruneval F; Fernandez-Serra M; Duchemin I
    J Chem Phys; 2016 Jan; 144(3):034109. PubMed ID: 26801022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 May; 30(21):215502. PubMed ID: 29667601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory.
    Leng X; Yin H; Liang D; Ma Y
    J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes.
    Cazzaniga M; Cargnoni F; Penconi M; Bossi A; Ceresoli D
    J Chem Theory Comput; 2020 Feb; 16(2):1188-1199. PubMed ID: 31860292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.
    Ma Y; Rohlfing M; Molteni C
    J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equation-of-motion coupled-cluster study on exciton states of polyethylene with periodic boundary condition.
    Katagiri H
    J Chem Phys; 2005 Jun; 122(22):224901. PubMed ID: 15974710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the
    Hashemi Z; Leppert L
    J Phys Chem A; 2021 Mar; 125(10):2163-2172. PubMed ID: 33656894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GW+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3 and (CdSe)6 clusters.
    Noguchi Y; Sugino O; Nagaoka M; Ishii S; Ohno K
    J Chem Phys; 2012 Jul; 137(2):024306. PubMed ID: 22803535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation.
    Palummo M; Hogan C; Sottile F; Bagalá P; Rubio A
    J Chem Phys; 2009 Aug; 131(8):084102. PubMed ID: 19725603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.