These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 24908018)

  • 1. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
    Cai Y; Wu HA; Luo SN
    J Chem Phys; 2014 Jun; 140(21):214317. PubMed ID: 24908018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
    Baidakov VG; Bobrov KS
    J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth.
    E JC; Wang L; Cai Y; Wu HA; Luo SN
    J Chem Phys; 2015 Feb; 142(6):064704. PubMed ID: 25681932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation rate analysis of methane hydrate from molecular dynamics simulations.
    Yuhara D; Barnes BC; Suh D; Knott BC; Beckham GT; Yasuoka K; Wu DT; Sum AK
    Faraday Discuss; 2015; 179():463-74. PubMed ID: 25876773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting dynamics of superheated argon: nucleation and growth.
    Luo SN; Zheng L; Strachan A; Swift DC
    J Chem Phys; 2007 Jan; 126(3):034505. PubMed ID: 17249882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state homogeneous nucleation and growth of water droplets: extended numerical treatment.
    Mokshin AV; Galimzyanov BN
    J Phys Chem B; 2012 Oct; 116(39):11959-67. PubMed ID: 22957738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Characterization of Stochastic Cavitation of a Binary Metallic Liquid under Negative Pressure.
    An Q; Garrett G; Samwer K; Liu Y; Zybin SV; Luo SN; Demetriou MD; Johnson WL; Goddard WA
    J Phys Chem Lett; 2011 Jun; 2(11):1320-3. PubMed ID: 26295428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-Dependent Surface Free Energy and Tolman-Corrected Droplet Nucleation of TIP4P/2005 Water.
    Joswiak MN; Duff N; Doherty MF; Peters B
    J Phys Chem Lett; 2013 Dec; 4(24):4267-72. PubMed ID: 26296177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation in amorphous solids.
    Guan P; Lu S; Spector MJ; Valavala PK; Falk ML
    Phys Rev Lett; 2013 May; 110(18):185502. PubMed ID: 23683215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.
    Cheng B; Tribello GA; Ceriotti M
    J Chem Phys; 2017 Sep; 147(10):104707. PubMed ID: 28915742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method.
    Iwamatsu M
    J Chem Phys; 2008 Feb; 128(8):084504. PubMed ID: 18315058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free energy of cluster formation and a new scaling relation for the nucleation rate.
    Tanaka KK; Diemand J; Angélil R; Tanaka H
    J Chem Phys; 2014 May; 140(19):194310. PubMed ID: 24852541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism for cavitation in water under tension.
    Menzl G; Gonzalez MA; Geiger P; Caupin F; Abascal JL; Valeriani C; Dellago C
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13582-13587. PubMed ID: 27803329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.