These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24908355)

  • 1. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.
    Wang Y; Cao M; Zhao X; Zhu G; McClean C; Zhao Y; Fan Y
    Med Eng Phys; 2014 Nov; 36(11):1408-15. PubMed ID: 24908355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
    Shakouri E; Sadeghi MH; Maerefat M; Shajari S
    Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone.
    Shakouri E; Sadeghi MH; Karafi MR; Maerefat M; Farzin M
    Proc Inst Mech Eng H; 2015 Feb; 229(2):137-49. PubMed ID: 25767150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling.
    Zheng Q; Xia L; Zhang X; Zhang C; Hu Y
    Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametric effect of vibrational drilling on osteonecrosis and comparative histopathology study with conventional drilling of cortical bone.
    Singh G; Jain V; Gupta D; Sharma A
    Proc Inst Mech Eng H; 2018 Oct; 232(10):975-986. PubMed ID: 30112958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.
    Mediouni M; Schlatterer DR; Khoury A; Von Bergen T; Shetty SH; Arora M; Dhond A; Vaughan N; Volosnikov A
    J Orthop Res; 2017 Nov; 35(11):2386-2391. PubMed ID: 28181707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies.
    Bai X; Hou S; Li K; Qu Y; Zhu W
    Med Eng Phys; 2020 Sep; 83():73-81. PubMed ID: 32807351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical evaluation of sequential bone drilling strategies based on thermal damage.
    Tai BL; Palmisano AC; Belmont B; Irwin TA; Holmes J; Shih AJ
    Med Eng Phys; 2015 Sep; 37(9):855-61. PubMed ID: 26163230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of parameters on temperature rise and chips morphology in low-frequency vibration-assisted bone drilling.
    Han Y; Lv Q; Song Y; Zhang Q
    Med Eng Phys; 2022 May; 103():103791. PubMed ID: 35500992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
    Gupta V; Pandey PM; Gupta RK; Mridha AR
    Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.
    Alam K; Mitrofanov AV; Silberschmidt VV
    Med Eng Phys; 2011 Mar; 33(2):234-9. PubMed ID: 21044856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical investigation of cracking behavior of cortical bone in cutting.
    Alam K
    Technol Health Care; 2014; 22(5):741-50. PubMed ID: 25097063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Finite Element Analysis of Force and Temperature in Ultrasonic Vibration Assisted Bone Cutting.
    Ying Z; Shu L; Sugita N
    Ann Biomed Eng; 2020 Apr; 48(4):1281-1290. PubMed ID: 31933002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods.
    Bai X; Hou S; Li K; Qu Y; Zhang T
    Med Eng Phys; 2019 Jul; 69():1-7. PubMed ID: 31229386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of transient machining in the cortical bone drilling process by conventional and axial vibration-assisted drilling methods.
    Bai X; Qiao G; Liu Z; Zhu W
    Proc Inst Mech Eng H; 2023 Apr; 237(4):489-501. PubMed ID: 36927106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of thermal aspects of high-speed drilling of bone by theoretical and experimental approaches.
    Shakouri E; Ghorbani Nezhad M; Ghorbani P; Khosravi-Nejad F
    Phys Eng Sci Med; 2020 Sep; 43(3):959-972. PubMed ID: 32632571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.
    Gupta V; Pandey PM
    Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones.
    Singh RP; Pandey PM; Behera C; Mridha AR
    Proc Inst Mech Eng H; 2020 Aug; 234(8):829-842. PubMed ID: 32490719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drilling in cortical bone: a finite element model and experimental investigations.
    Lughmani WA; Bouazza-Marouf K; Ashcroft I
    J Mech Behav Biomed Mater; 2015 Feb; 42():32-42. PubMed ID: 25460924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.