BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24908403)

  • 1. Pericellular matrix plays an active role in retention and cellular uptake of large-sized nanoparticles.
    Xu R; Xiong B; Zhou R; Shen H; Yeung ES; He Y
    Anal Bioanal Chem; 2014 Aug; 406(20):5031-7. PubMed ID: 24908403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pericellular matrix enhances retention and cellular uptake of nanoparticles.
    Zhou R; Zhou H; Xiong B; He Y; Yeung ES
    J Am Chem Soc; 2012 Aug; 134(32):13404-9. PubMed ID: 22861162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent transfection efficiency of PEI-coated gold nanoparticles.
    Cebrián V; Martín-Saavedra F; Yagüe C; Arruebo M; Santamaría J; Vilaboa N
    Acta Biomater; 2011 Oct; 7(10):3645-55. PubMed ID: 21704738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry.
    Wang H; Chen B; He M; Li X; Chen P; Hu B
    Talanta; 2019 Aug; 200():398-407. PubMed ID: 31036201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention.
    Yang C; Uertz J; Yohan D; Chithrani BD
    Nanoscale; 2014 Oct; 6(20):12026-33. PubMed ID: 25182693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection.
    Yan P; Wang R; Zhao N; Zhao H; Chen DF; Xu FJ
    Nanoscale; 2015 Mar; 7(12):5281-91. PubMed ID: 25721660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.
    Li J; Han J; Xu T; Guo C; Bu X; Zhang H; Wang L; Sun H; Yang B
    Langmuir; 2013 Jun; 29(23):7102-10. PubMed ID: 23692027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size, Shape, and Protein Corona Determine Cellular Uptake and Removal Mechanisms of Gold Nanoparticles.
    Ding L; Yao C; Yin X; Li C; Huang Y; Wu M; Wang B; Guo X; Wang Y; Wu M
    Small; 2018 Oct; 14(42):e1801451. PubMed ID: 30239120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice.
    Lin Z; Monteiro-Riviere NA; Riviere JE
    Nanotoxicology; 2016; 10(2):162-72. PubMed ID: 25961857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.
    Liu X; Chen Y; Li H; Huang N; Jin Q; Ren K; Ji J
    ACS Nano; 2013 Jul; 7(7):6244-57. PubMed ID: 23799860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles.
    Cruje C; Chithrani BD
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2125-31. PubMed ID: 26413630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular interactions between gold nanoparticles and model cell membranes.
    Hu P; Zhang X; Zhang C; Chen Z
    Phys Chem Chem Phys; 2015 Apr; 17(15):9873-84. PubMed ID: 25776800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs.
    Nold P; Hartmann R; Feliu N; Kantner K; Gamal M; Pelaz B; Hühn J; Sun X; Jungebluth P; Del Pino P; Hackstein H; Macchiarini P; Parak WJ; Brendel C
    J Nanobiotechnology; 2017 Mar; 15(1):24. PubMed ID: 28356160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
    Yu J; Hsu CH; Huang CC; Chang PY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and In Vitro Evaluation of Linear PEI-Shelled Heparin/Berberine Nanoparticles in Human Osteosarcoma U-2 OS Cells.
    Hsu HK; Hsu KH; Cheng YM; Suen HY; Peng SF
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30487471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular transport pathways of polymer coated gold nanoparticles.
    Lin IC; Liang M; Liu TY; Monteiro MJ; Toth I
    Nanomedicine; 2012 Jan; 8(1):8-11. PubMed ID: 22024197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties.
    Umeda Y; Kojima C; Harada A; Horinaka H; Kono K
    Bioconjug Chem; 2010 Aug; 21(8):1559-64. PubMed ID: 20666440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier.
    Chithrani DB; Dunne M; Stewart J; Allen C; Jaffray DA
    Nanomedicine; 2010 Feb; 6(1):161-9. PubMed ID: 19447206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.