BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 24909171)

  • 1. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies.
    Aye Y; Li M; Long MJ; Weiss RS
    Oncogene; 2015 Apr; 34(16):2011-21. PubMed ID: 24909171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2).
    Chen CW; Li Y; Hu S; Zhou W; Meng Y; Li Z; Zhang Y; Sun J; Bo Z; DePamphilis ML; Yen Y; Han Z; Zhu W
    Oncogene; 2019 Mar; 38(13):2364-2379. PubMed ID: 30518875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans.
    Jung KW; Kwon S; Jung JH; Bahn YS
    Microbiol Spectr; 2022 Aug; 10(4):e0104422. PubMed ID: 35736239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes.
    Arnaoutov A; Dasso M
    Science; 2014 Sep; 345(6203):1512-5. PubMed ID: 25237103
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Tran P; Wanrooij PH; Lorenzon P; Sharma S; Thelander L; Nilsson AK; Olofsson AK; Medini P; von Hofsten J; Stål P; Chabes A
    J Biol Chem; 2019 Nov; 294(44):15889-15897. PubMed ID: 31300555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(-/-) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors.
    Lin ZP; Belcourt MF; Cory JG; Sartorelli AC
    J Biol Chem; 2004 Jun; 279(26):27030-8. PubMed ID: 15096505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular regulation of ribonucleotide reductase in eukaryotes.
    Guarino E; Salguero I; Kearsey SE
    Semin Cell Dev Biol; 2014 Jun; 30():97-103. PubMed ID: 24704278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress.
    Cohen R; Milo S; Sharma S; Savidor A; Covo S
    DNA Repair (Amst); 2019 Nov; 83():102674. PubMed ID: 31375409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance.
    Schmidt TT; Sharma S; Reyes GX; Gries K; Gross M; Zhao B; Yuan JH; Wade R; Chabes A; Hombauer H
    Nucleic Acids Res; 2019 Jan; 47(1):237-252. PubMed ID: 30462295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells.
    Håkansson P; Hofer A; Thelander L
    J Biol Chem; 2006 Mar; 281(12):7834-41. PubMed ID: 16436374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of dNTP supply that play an essential role in maintaining genome integrity in eukaryotic cells.
    Niida H; Shimada M; Murakami H; Nakanishi M
    Cancer Sci; 2010 Dec; 101(12):2505-9. PubMed ID: 20874841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase.
    Xie M; Yen Y; Owonikoko TK; Ramalingam SS; Khuri FR; Curran WJ; Doetsch PW; Deng X
    Cancer Res; 2014 Jan; 74(1):212-23. PubMed ID: 24197132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Schizosaccharomyces pombe replication inhibitor Spd1 regulates ribonucleotide reductase activity and dNTPs by binding to the large Cdc22 subunit.
    Håkansson P; Dahl L; Chilkova O; Domkin V; Thelander L
    J Biol Chem; 2006 Jan; 281(3):1778-83. PubMed ID: 16317005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. dNTP pools determine fork progression and origin usage under replication stress.
    Poli J; Tsaponina O; Crabbé L; Keszthelyi A; Pantesco V; Chabes A; Lengronne A; Pasero P
    EMBO J; 2012 Feb; 31(4):883-94. PubMed ID: 22234185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets.
    Greene BL; Kang G; Cui C; Bennati M; Nocera DG; Drennan CL; Stubbe J
    Annu Rev Biochem; 2020 Jun; 89():45-75. PubMed ID: 32569524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonucleotide reductase is not limiting for mitochondrial DNA copy number in mice.
    Ylikallio E; Page JL; Xu X; Lampinen M; Bepler G; Ide T; Tyynismaa H; Weiss RS; Suomalainen A
    Nucleic Acids Res; 2010 Dec; 38(22):8208-18. PubMed ID: 20724444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonucleotide reductases: essential enzymes for bacterial life.
    Torrents E
    Front Cell Infect Microbiol; 2014; 4():52. PubMed ID: 24809024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability.
    Sanvisens N; de Llanos R; Puig S
    Biomed J; 2013; 36(2):51-8. PubMed ID: 23644233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylation regulates ribonucleotide reductase activity and cancer cell growth.
    Chen G; Luo Y; Warncke K; Sun Y; Yu DS; Fu H; Behera M; Ramalingam SS; Doetsch PW; Duong DM; Lammers M; Curran WJ; Deng X
    Nat Commun; 2019 Jul; 10(1):3213. PubMed ID: 31324785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypermutability and error catastrophe due to defects in ribonucleotide reductase.
    Ahluwalia D; Schaaper RM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18596-601. PubMed ID: 24167285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.