These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 24909230)
21. Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. Wallon G; Kryger G; Lovett ST; Oshima T; Ringe D; Petsko GA J Mol Biol; 1997 Mar; 266(5):1016-31. PubMed ID: 9086278 [TBL] [Abstract][Full Text] [Related]
22. Crystallization and preliminary X-ray diffraction analysis of various enzyme-substrate complexes of isopropylmalate dehydrogenase from Thermus thermophilus. Merli A; Manikandan K; Gráczer E; Schuldt L; Singh RK; Závodszky P; Vas M; Weiss MS Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jun; 66(Pt 6):738-43. PubMed ID: 20516614 [TBL] [Abstract][Full Text] [Related]
23. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
24. Novel substrate specificity of designer 3-isopropylmalate dehydrogenase derived from Thermus thermophilus HB8. Fujita M; Tamegai H; Eguchi T; Kakinuma K Biosci Biotechnol Biochem; 2001 Dec; 65(12):2695-700. PubMed ID: 11826966 [TBL] [Abstract][Full Text] [Related]
25. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Kasahara R; Sato T; Tamegai H; Kato C Biosci Biotechnol Biochem; 2009 Nov; 73(11):2541-3. PubMed ID: 19897891 [TBL] [Abstract][Full Text] [Related]
26. Glutamate 270 plays an essential role in K(+)-activation and domain closure of Thermus thermophilus isopropylmalate dehydrogenase. Gráczer É; Palló A; Oláh J; Szimler T; Konarev PV; Svergun DI; Merli A; Závodszky P; Weiss MS; Vas M FEBS Lett; 2015 Jan; 589(2):240-5. PubMed ID: 25497013 [TBL] [Abstract][Full Text] [Related]
27. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Závodszky P; Kardos J; Svingor ; Petsko GA Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7406-11. PubMed ID: 9636162 [TBL] [Abstract][Full Text] [Related]
29. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. Khan MS; Gargiulo S; Soumillion P FEBS Lett; 2020 Aug; 594(15):2421-2430. PubMed ID: 32412093 [TBL] [Abstract][Full Text] [Related]
30. Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. Wallon G; Lovett ST; Magyar C; Svingor A; Szilagyi A; Zàvodszky P; Ringe D; Petsko GA Protein Eng; 1997 Jun; 10(6):665-72. PubMed ID: 9278279 [TBL] [Abstract][Full Text] [Related]
31. Molecular modeling and docking studies of O-succinylbenzoate synthase of M. tuberculosis--a potential target for antituberculosis drug design. Pulaganti M; Banaganapalli B; Mulakayala C; Chitta SK; C M A Appl Biochem Biotechnol; 2014 Feb; 172(3):1407-32. PubMed ID: 24203275 [TBL] [Abstract][Full Text] [Related]
32. The effects of mutations at position 253 on the thermostability of the Bacillus subtilis 3-isopropylmalate dehydrogenase subunit interface. Ohkuri T; Yamagishi A J Biochem; 2007 Jun; 141(6):791-7. PubMed ID: 17389690 [TBL] [Abstract][Full Text] [Related]
33. Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana: INSIGHTS ON LEUCINE AND ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS. Lee SG; Nwumeh R; Jez JM J Biol Chem; 2016 Jun; 291(26):13421-30. PubMed ID: 27137927 [TBL] [Abstract][Full Text] [Related]
34. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nandakumar M; Nathan C; Rhee KY Nat Commun; 2014 Jun; 5():4306. PubMed ID: 24978671 [TBL] [Abstract][Full Text] [Related]
35. Resisting resistant Mycobacterium tuberculosis naturally: mechanistic insights into the inhibition of the parasite's sole signal peptidase Leader peptidase B. Dhiman H; Dhanjal JK; Sharma S; Chacko S; Grover S; Grover A Biochem Biophys Res Commun; 2013 Apr; 433(4):552-7. PubMed ID: 23510997 [TBL] [Abstract][Full Text] [Related]
36. Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody. Ishii N; Taguchi H; Sasabe H; Yoshida M J Mol Biol; 1994 Feb; 236(3):691-6. PubMed ID: 7906737 [TBL] [Abstract][Full Text] [Related]
37. A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Evans G; Schuldt L; Griffin MD; Devenish SR; Grant Pearce F; Perugini MA; Dobson RC; Jameson GB; Weiss MS; Gerrard JA Arch Biochem Biophys; 2011 Aug; 512(2):154-9. PubMed ID: 21672512 [TBL] [Abstract][Full Text] [Related]
38. Structural and energetic basis of isopropylmalate dehydrogenase enzyme catalysis. Palló A; Oláh J; Gráczer E; Merli A; Závodszky P; Weiss MS; Vas M FEBS J; 2014 Nov; 281(22):5063-76. PubMed ID: 25211160 [TBL] [Abstract][Full Text] [Related]
39. Mirror image mutations reveal the significance of an intersubunit ion cluster in the stability of 3-isopropylmalate dehydrogenase. Németh A; Svingor A; Pócsik M; Dobó J; Magyar C; Szilágyi A; Gál P; Závodszky P FEBS Lett; 2000 Feb; 468(1):48-52. PubMed ID: 10683439 [TBL] [Abstract][Full Text] [Related]
40. Crystal structures of mutants of Thermus thermophilus IPMDH adapted to low temperatures. Hirose R; Suzuki T; Moriyama H; Sato T; Yamagishi A; Oshima T; Tanaka N Protein Eng; 2001 Feb; 14(2):81-4. PubMed ID: 11297665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]