BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24909362)

  • 21. Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27.
    Lee NR; Lakshmanan M; Aggarwal S; Song JW; Karimi IA; Lee DY; Park JB
    Microb Cell Fact; 2014 Apr; 13():61. PubMed ID: 24774833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis.
    Usui Y; Hirasawa T; Furusawa C; Shirai T; Yamamoto N; Mori H; Shimizu H
    Microb Cell Fact; 2012 Jun; 11():87. PubMed ID: 22721472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Entner-Doudoroff and Nonoxidative Pentose Phosphate Pathways Bypass Glycolysis and the Oxidative Pentose Phosphate Pathway in Ralstonia solanacearum.
    Jyoti P; Shree M; Joshi C; Prakash T; Ray SK; Satapathy SS; Masakapalli SK
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
    Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A
    BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.
    Au J; Choi J; Jones SW; Venkataramanan KP; Antoniewicz MR
    Metab Eng; 2014 Nov; 26():23-33. PubMed ID: 25183671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and biochemical characterizations of Thermus thermophilus HB8 transketolase producing a heptulose.
    Yoshihara A; Takamatsu Y; Mochizuki S; Yoshida H; Masui R; Izumori K; Kamitori S
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):233-245. PubMed ID: 36441206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2013 Jan; 15():34-47. PubMed ID: 23111062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational design of ¹³C-labeling experiments for metabolic flux analysis in mammalian cells.
    Crown SB; Ahn WS; Antoniewicz MR
    BMC Syst Biol; 2012 May; 6():43. PubMed ID: 22591686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells.
    Metallo CM; Walther JL; Stephanopoulos G
    J Biotechnol; 2009 Nov; 144(3):167-74. PubMed ID: 19622376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal
    Toya Y; Ohashi S; Shimizu H
    J Biosci Bioeng; 2018 Mar; 125(3):301-305. PubMed ID: 29107627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.
    Nargund S; Sriram G
    Mol Biosyst; 2013 Jan; 9(1):99-112. PubMed ID: 23114423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum.
    Kleijn RJ; van Winden WA; Ras C; van Gulik WM; Schipper D; Heijnen JJ
    Appl Environ Microbiol; 2006 Jul; 72(7):4743-54. PubMed ID: 16820467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions.
    Williams TC; Poolman MG; Howden AJ; Schwarzlander M; Fell DA; Ratcliffe RG; Sweetlove LJ
    Plant Physiol; 2010 Sep; 154(1):311-23. PubMed ID: 20605915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by
    Long CP; Gonzalez JE; Cipolla RM; Antoniewicz MR
    Metab Eng; 2017 Nov; 44():191-197. PubMed ID: 29042298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping.
    Sriram G; Shanks JV
    Metab Eng; 2004 Apr; 6(2):116-32. PubMed ID: 15113565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.