These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24910017)

  • 1. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae.
    Rawson FJ; Downard AJ; Baronian KH
    Sci Rep; 2014 Jun; 4():5216. PubMed ID: 24910017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electrochemical microscopy based evaluation of influence of pH on bioelectrochemical activity of yeast cells - Saccharomyces cerevisiae.
    Ramanavicius A; Morkvenaite-Vilkonciene I; Kisieliute A; Petroniene J; Ramanaviciene A
    Colloids Surf B Biointerfaces; 2017 Jan; 149():1-6. PubMed ID: 27710849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method.
    Baronian KH; Downard AJ; Lowen RK; Pasco N
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):108-13. PubMed ID: 12382050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical System for the Study of Trans-Plasma Membrane Electron Transport in Whole Eukaryotic Cells.
    Sherman HG; Jovanovic C; Stolnik S; Rawson FJ
    Anal Chem; 2018 Feb; 90(4):2780-2786. PubMed ID: 29332396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae.
    Zhao J; Wang M; Yang Z; Wang Z; Wang H; Yang Z
    Anal Chim Acta; 2007 Jul; 597(1):67-74. PubMed ID: 17658314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
    Santos-Ocaña C; Navas P; Crane FL; Córdoba F
    J Bioenerg Biomembr; 1995 Dec; 27(6):597-603. PubMed ID: 8746846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits.
    Herst PM; Perrone GG; Dawes IW; Bircham PW; Berridge MV
    FEMS Yeast Res; 2008 Sep; 8(6):897-905. PubMed ID: 18657191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae.
    Crane FL; Roberts H; Linnane AW; Löw H
    J Bioenerg Biomembr; 1982 Jun; 14(3):191-205. PubMed ID: 7047521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the redox components of transplasma membrane electron transport system from Leishmania donovani promastigotes.
    Bera T; Lakshman K; Ghanteswari D; Pal S; Sudhahar D; Islam MN; Bhuyan NR; Das P
    Biochim Biophys Acta; 2005 Oct; 1725(3):314-26. PubMed ID: 16023297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system.
    Clark MG; Partick EJ; Patten GS; Crane FL; Löw H; Grebing C
    Biochem J; 1981 Dec; 200(3):565-72. PubMed ID: 6282252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability.
    Wright MV; Kuhn TB
    J Neurochem; 2002 Nov; 83(3):655-64. PubMed ID: 12390527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoorganotrophic electrofermentation by Cupriavidus necator using redox mediators.
    Gemünde A; Rossini E; Lenz O; Frielingsdorf S; Holtmann D
    Bioelectrochemistry; 2024 Aug; 158():108694. PubMed ID: 38518507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin.
    Sun IL; Crane FL; Grebing C; Löw H
    Exp Cell Res; 1985 Feb; 156(2):528-36. PubMed ID: 3881265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Mediator Enhanced Collisions on an Ultramicroelectrode for Selective Identification of Single
    Chen Y; Liu Y; Wang D; Gao G; Zhi J
    Anal Chem; 2022 Sep; 94(37):12630-12637. PubMed ID: 36068505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Potential of Electron Extraction from Microbes with Ferrocene-Containing Conjugated Oligoelectrolytes.
    McCuskey SR; Rengert ZD; Zhang M; Helgeson ME; Nguyen TQ; Bazan GC
    Adv Biosyst; 2019 Feb; 3(2):e1800303. PubMed ID: 32627367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active proton leak in mitochondria: a new way to regulate substrate oxidation.
    Mourier A; Devin A; Rigoulet M
    Biochim Biophys Acta; 2010 Feb; 1797(2):255-61. PubMed ID: 19896922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types.
    Sherman HG; Jovanovic C; Abuawad A; Kim DH; Collins H; Dixon JE; Cavanagh R; Markus R; Stolnik S; Rawson FJ
    Biochim Biophys Acta Bioenerg; 2019 Aug; 1860(8):628-639. PubMed ID: 31229569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of NADH in yeast cells by external ferricyanide reduction.
    Yamashoji S; Kajimoto G
    Biochim Biophys Acta; 1986 Nov; 852(1):25-9. PubMed ID: 3533148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.