BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24910135)

  • 1. A mechanistic in vitro study of the microgalvanic degradation of secondary phase particles in magnesium alloys.
    Walter R; Kannan MB
    J Biomed Mater Res A; 2015 Mar; 103(3):990-1000. PubMed ID: 24910135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro degradation behaviour of a friction stir processed magnesium alloy.
    Bobby Kannan M; Dietzel W; Zettler R
    J Mater Sci Mater Med; 2011 Nov; 22(11):2397-401. PubMed ID: 21894540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids.
    Rettig R; Virtanen S
    J Biomed Mater Res A; 2009 Feb; 88(2):359-69. PubMed ID: 18286623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy.
    Ren Y; Babaie E; Lin B; Bhaduri SB
    Biomed Mater; 2017 Aug; 12(4):045026. PubMed ID: 28604359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.
    Xin Y; Huo K; Tao H; Tang G; Chu PK
    Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating.
    Rojaee R; Fathi M; Raeissi K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro corrosion and biocompatibility of binary magnesium alloys.
    Gu X; Zheng Y; Cheng Y; Zhong S; Xi T
    Biomaterials; 2009 Feb; 30(4):484-98. PubMed ID: 19000636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.
    Gaur S; Singh Raman RK; Khanna AS
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():91-101. PubMed ID: 25063097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques.
    Bobby Kannan M; Singh RK
    J Biomed Mater Res A; 2010 Jun; 93(3):1050-5. PubMed ID: 19753621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys.
    Schinhammer M; Steiger P; Moszner F; Löffler JF; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):1882-93. PubMed ID: 23498209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.
    Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective layer formation on magnesium in cell culture medium.
    Wagener V; Virtanen S
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():341-51. PubMed ID: 27040228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials.
    Ur Rahman Z; Pompa L; Haider W
    J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.
    Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ
    Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application.
    Rosalbino F; De Negri S; Scavino G; Saccone A
    J Biomed Mater Res A; 2013 Mar; 101(3):704-11. PubMed ID: 22941918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.
    Törne K; Örnberg A; Weissenrieder J
    Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids.
    Rettig R; Virtanen S
    J Biomed Mater Res A; 2008 Apr; 85(1):167-75. PubMed ID: 17688266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.
    Pan Y; He S; Wang D; Huang D; Zheng T; Wang S; Dong P; Chen C
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():85-96. PubMed ID: 25492176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review.
    Xin Y; Hu T; Chu PK
    Acta Biomater; 2011 Apr; 7(4):1452-9. PubMed ID: 21145436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.