These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24910287)

  • 1. A thixotropic supramolecular hydrogel of adenine and riboflavin-5'-phosphate sodium salt showing enhanced fluorescence properties.
    Bairi P; Chakraborty P; Mondal S; Roy B; Nandi AK
    Soft Matter; 2014 Jul; 10(28):5114-20. PubMed ID: 24910287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bicomponent hydrogels of lumichrome and melamine: photoluminescence property and its dependency on pH and temperature.
    Bairi P; Roy B; Nandi AK
    J Phys Chem B; 2010 Sep; 114(35):11454-61. PubMed ID: 20715827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of complementary small molecules on the properties of bicomponent hydrogel of riboflavin.
    Saha A; Roy B; Esterrani A; Nandi AK
    Org Biomol Chem; 2011 Feb; 9(3):770-6. PubMed ID: 21103491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic approach on the self-organization of the two-component thermoreversible hydrogel of riboflavin and melamine.
    Saha A; Manna S; Nandi AK
    Langmuir; 2007 Dec; 23(26):13126-35. PubMed ID: 18001072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-assembled conductive hydrogel of N-fluorenylmethoxycarbonyl phenylalanine with polyaniline.
    Chakraborty P; Bairi P; Mondal S; Nandi AK
    J Phys Chem B; 2014 Dec; 118(48):13969-80. PubMed ID: 25383628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A co-assembled gel of a pyromellitic dianhydride derivative and polyaniline with optoelectronic and photovoltaic properties.
    Bairi P; Chakraborty P; Shit A; Mondal S; Roy B; Nandi AK
    Langmuir; 2014 Jul; 30(25):7547-55. PubMed ID: 24912087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved mechanical and electronic properties of co-assembled folic acid gel with aniline and polyaniline.
    Chakraborty P; Bairi P; Roy B; Nandi AK
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3615-22. PubMed ID: 24495072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microrheology and microstructure of Fmoc-derivative hydrogels.
    Aufderhorst-Roberts A; Frith WJ; Kirkland M; Donald AM
    Langmuir; 2014 Apr; 30(15):4483-92. PubMed ID: 24684622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogelation Induced by Fmoc-Protected Peptidomimetics.
    Zanna N; Merlettini A; Tatulli G; Milli L; Focarete ML; Tomasini C
    Langmuir; 2015 Nov; 31(44):12240-50. PubMed ID: 26491829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-component thermoreversible hydrogels of melamine and gallic acid.
    Saha A; Roy B; Garai A; Nandi AK
    Langmuir; 2009 Aug; 25(15):8457-61. PubMed ID: 20050043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of three-dimensional DNA hydrogels from linear building blocks.
    Nöll T; Schönherr H; Wesner D; Schopferer M; Paululat T; Nöll G
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8328-32. PubMed ID: 24965950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly.
    Wang L; Shi X; Wu Y; Zhang J; Zhu Y; Wang J
    Soft Matter; 2018 Jan; 14(4):566-573. PubMed ID: 29334109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine.
    Singh P; Misra S; Das A; Roy S; Datta P; Bhattacharjee G; Satpati B; Nanda J
    ACS Appl Bio Mater; 2019 Nov; 2(11):4881-4891. PubMed ID: 35021488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic viscoelastic properties of cellulose carbamate dissolved in NaOH aqueous solution.
    Guo Y; Zhou J; Zhang L
    Biomacromolecules; 2011 May; 12(5):1927-34. PubMed ID: 21476547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoengineering of a Supramolecular Gel by Copolymer Incorporation: Enhancement of Gelation Rate, Mechanical Property, Fluorescence, and Conductivity.
    Chakraborty P; Das S; Mondal S; Bairi P; Nandi AK
    Langmuir; 2016 Feb; 32(7):1871-80. PubMed ID: 26836971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-based fluorescent supramolecular hydrogel: scaffold for energy transfer.
    Mukherjee S; Kar T; Das PK
    Chem Asian J; 2014 Oct; 9(10):2798-805. PubMed ID: 25056417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.