These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24910309)
1. Assessment of energy potential from wetland plants along the minor channel network on an agricultural floodplain. Pappalardo SE; Prosdocimi M; Tarolli P; Borin M Environ Sci Pollut Res Int; 2015 Feb; 22(4):2479-90. PubMed ID: 24910309 [TBL] [Abstract][Full Text] [Related]
2. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787 [TBL] [Abstract][Full Text] [Related]
3. Sustainable bioenergy production from marginal lands in the US Midwest. Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409 [TBL] [Abstract][Full Text] [Related]
4. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Tonini D; Hamelin L; Alvarado-Morales M; Astrup TF Bioresour Technol; 2016 May; 208():123-133. PubMed ID: 26938807 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry? Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998 [TBL] [Abstract][Full Text] [Related]
6. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands. Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474 [TBL] [Abstract][Full Text] [Related]
7. Arundo donax L.: a non-food crop for bioenergy and bio-compound production. Corno L; Pilu R; Adani F Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226 [TBL] [Abstract][Full Text] [Related]
8. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops. Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898 [TBL] [Abstract][Full Text] [Related]
9. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China. Lou Y; Pan Y; Gao C; Jiang M; Lu X; Xu YJ PLoS One; 2016; 11(4):e0153972. PubMed ID: 27097325 [TBL] [Abstract][Full Text] [Related]
10. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
11. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel? Guo M; Li C; Facciotto G; Bergante S; Bhatia R; Comolli R; Ferré C; Murphy R Biotechnol Biofuels; 2015; 8():134. PubMed ID: 26339291 [TBL] [Abstract][Full Text] [Related]
12. [Diversity of plant in Jiaxing Shijiuyang ecological wetland for drinking water during operation]. Shen YQ; Wei HB; Cheng WD; Zhang HM; Wang WD; Yin CQ Huan Jing Ke Xue; 2011 Oct; 32(10):2883-90. PubMed ID: 22279896 [TBL] [Abstract][Full Text] [Related]
13. Exploring the production of bio-energy from wood biomass. Italian case study. González-García S; Bacenetti J Sci Total Environ; 2019 Jan; 647():158-168. PubMed ID: 30077846 [TBL] [Abstract][Full Text] [Related]
14. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future. Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659 [TBL] [Abstract][Full Text] [Related]
15. Biofuels from wastes in Marmara Region, Turkey: potentials and constraints. Ocak S; Acar S Environ Sci Pollut Res Int; 2021 Dec; 28(46):66026-66042. PubMed ID: 34324148 [TBL] [Abstract][Full Text] [Related]
16. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research. Ribeiro GF; Junior AB Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060 [TBL] [Abstract][Full Text] [Related]
17. A mini review on renewable sources for biofuel. Ho DP; Ngo HH; Guo W Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598 [TBL] [Abstract][Full Text] [Related]
18. Biochemical methane potential of residual biomass for energy generation. Galván-Arzola U; Moreno-Medina CU; Lucho-Chigo R; Rodríguez-Rosales MDJ; Valencia-Vázquez R Environ Technol; 2021 Mar; 42(8):1165-1178. PubMed ID: 31475614 [TBL] [Abstract][Full Text] [Related]
19. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK. Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602 [TBL] [Abstract][Full Text] [Related]