BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24910339)

  • 1. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells.
    Croese E; Jeremiasse AW; Marshall IP; Spormann AM; Euverink GJ; Geelhoed JS; Stams AJ; Plugge CM
    Enzyme Microb Technol; 2014; 61-62():67-75. PubMed ID: 24910339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production in microbial electrolysis cells with biocathodes.
    Noori MT; Rossi R; Logan BE; Min B
    Trends Biotechnol; 2024 Jul; 42(7):815-828. PubMed ID: 38360421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell.
    Croese E; Pereira MA; Euverink GJ; Stams AJ; Geelhoed JS
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1083-93. PubMed ID: 21983651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil.
    Baba R; Kimura M; Asakawa S; Watanabe T
    FEMS Microbiol Lett; 2014 Jan; 350(2):249-56. PubMed ID: 24261851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production.
    Rago L; Ruiz Y; Baeza JA; Guisasola A; Cortés P
    Bioelectrochemistry; 2015 Dec; 106(Pt B):359-68. PubMed ID: 26138343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized potential and electrode materials implication on electro-fermentative di-hydrogen production: Microbial assemblages and hydrogenase gene copy variation.
    Arunasri K; Annie Modestra J; Yeruva DK; Vamshi Krishna K; Venkata Mohan S
    Bioresour Technol; 2016 Jan; 200():691-8. PubMed ID: 26556403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating MEC population dynamics to anode performance from DGGE and electrical data.
    Croese E; Keesman KJ; Widjaja-Greefkes AH; Geelhoed JS; Plugge CM; Sleutels TH; Stams AJ; Euverink GJ
    Syst Appl Microbiol; 2013 Sep; 36(6):408-16. PubMed ID: 23830069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biocathode of microbial electrochemical systems and microbially-influenced corrosion.
    Kim BH; Lim SS; Daud WR; Gadd GM; Chang IS
    Bioresour Technol; 2015 Aug; 190():395-401. PubMed ID: 25976915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source.
    Jourdin L; Freguia S; Donose BC; Keller J
    Bioelectrochemistry; 2015 Apr; 102():56-63. PubMed ID: 25497168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.
    Pisciotta JM; Zaybak Z; Call DF; Nam JY; Logan BE
    Appl Environ Microbiol; 2012 Aug; 78(15):5212-9. PubMed ID: 22610438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial community structure corresponds to performance during cathodic nitrate reduction.
    Wrighton KC; Virdis B; Clauwaert P; Read ST; Daly RA; Boon N; Piceno Y; Andersen GL; Coates JD; Rabaey K
    ISME J; 2010 Nov; 4(11):1443-55. PubMed ID: 20520654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells.
    Ghasemi B; Yaghmaei S; Abdi K; Mardanpour MM; Haddadi SA
    J Biosci Bioeng; 2020 Jan; 129(1):67-76. PubMed ID: 31445821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.
    Yuan H; He Z
    Chem Rec; 2017 Jul; 17(7):641-652. PubMed ID: 28375578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.