These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 24910370)

  • 1. Initiation of sporulation in Clostridium difficile: a twist on the classic model.
    Edwards AN; McBride SM
    FEMS Microbiol Lett; 2014 Sep; 358(2):110-8. PubMed ID: 24910370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.
    Paredes-Sabja D; Shen A; Sorg JA
    Trends Microbiol; 2014 Jul; 22(7):406-16. PubMed ID: 24814671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
    Edwards AN; Nawrocki KL; McBride SM
    Infect Immun; 2014 Oct; 82(10):4276-91. PubMed ID: 25069979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic mechanisms governing sporulation initiation in Clostridioides difficile.
    Lee CD; Rizvi A; Edwards AN; DiCandia MA; Vargas Cuebas GG; Monteiro MP; McBride SM
    Curr Opin Microbiol; 2022 Apr; 66():32-38. PubMed ID: 34933206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three Orphan Histidine Kinases Inhibit Clostridioides difficile Sporulation.
    Edwards AN; Wetzel D; DiCandia MA; McBride SM
    J Bacteriol; 2022 May; 204(5):e0010622. PubMed ID: 35416689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing and Quantifying Clostridium difficile Spore Formation.
    Shen A; Fimlaid KA; Pishdadian K
    Methods Mol Biol; 2016; 1476():129-42. PubMed ID: 27507338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Functional Spo0A Residues Critical for Sporulation in Clostridioides difficile.
    DiCandia MA; Edwards AN; Jones JB; Swaim GL; Mills BD; McBride SM
    J Mol Biol; 2022 Jul; 434(13):167641. PubMed ID: 35597553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spore differentiation pathway in the enteric pathogen Clostridium difficile.
    Pereira FC; Saujet L; Tomé AR; Serrano M; Monot M; Couture-Tosi E; Martin-Verstraete I; Dupuy B; Henriques AO
    PLoS Genet; 2013; 9(10):e1003782. PubMed ID: 24098139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of the sporulation pathway of Clostridium difficile.
    Fimlaid KA; Bond JP; Schutz KC; Putnam EE; Leung JM; Lawley TD; Shen A
    PLoS Genet; 2013; 9(8):e1003660. PubMed ID: 23950727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Coullon H; Rifflet A; Wheeler R; Janoir C; Boneca IG; Candela T
    J Biol Chem; 2018 Nov; 293(47):18040-18054. PubMed ID: 30266804
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Shen A
    Annu Rev Microbiol; 2020 Sep; 74():545-566. PubMed ID: 32905755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system.
    Edwards AN; McBride SM
    PLoS Genet; 2023 Oct; 19(10):e1010841. PubMed ID: 37844084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a Novel Regulator of Clostridioides difficile Cortex Formation.
    Touchette MH; Benito de la Puebla H; Alves Feliciano C; Tanenbaum B; Schenone M; Carr SA; Shen A
    mSphere; 2021 Jun; 6(3):e0021121. PubMed ID: 34047655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile.
    Childress KO; Edwards AN; Nawrocki KL; Anderson SE; Woods EC; McBride SM
    Infect Immun; 2016 Dec; 84(12):3434-3444. PubMed ID: 27647869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly.
    Barra-Carrasco J; Olguín-Araneda V; Plaza-Garrido A; Miranda-Cárdenas C; Cofré-Araneda G; Pizarro-Guajardo M; Sarker MR; Paredes-Sabja D
    J Bacteriol; 2013 Sep; 195(17):3863-75. PubMed ID: 23794627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory Targets of the Response Regulator RR_1586 from Clostridioides difficile Identified Using a Bacterial One-Hybrid Screen.
    Hebdon SD; Menon SK; Richter-Addo GB; Karr EA; West AH
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30201779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen
    Boudry P; Piattelli E; Drouineau E; Peltier J; Boutserin A; Lejars M; Hajnsdorf E; Monot M; Dupuy B; Martin-Verstraete I; Gautheret D; Toffano-Nioche C; Soutourina O
    RNA Biol; 2021 Nov; 18(11):1931-1952. PubMed ID: 33629931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.