BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24910375)

  • 1. Mechanoresponses of human primary osteoblasts grown on carbon nanotubes.
    Kroustalli A; Kotsikoris V; Karamitri A; Topouzis S; Deligianni D
    J Biomed Mater Res A; 2015 Mar; 103(3):1038-44. PubMed ID: 24910375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of physiological mechanical strains on the release of growth factors and the expression of differentiation marker genes in human osteoblasts growing on Ti-6Al-4V.
    Kokkinos PA; Zarkadis IK; Kletsas D; Deligianni DD
    J Biomed Mater Res A; 2009 Aug; 90(2):387-95. PubMed ID: 18523952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes.
    Lee JW; Park JW; Khang D
    PLoS One; 2015; 10(6):e0129856. PubMed ID: 26076355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes.
    Li X; Gao H; Uo M; Sato Y; Akasaka T; Abe S; Feng Q; Cui F; Watari F
    Biomed Mater; 2009 Feb; 4(1):015005. PubMed ID: 18981539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells.
    Giannona S; Firkowska I; Rojas-Chapana J; Giersig M
    J Nanosci Nanotechnol; 2007; 7(4-5):1679-83. PubMed ID: 17450943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation on carbon nanotube composite.
    Bhattacharya M; Wutticharoenmongkol-Thitiwongsawet P; Hamamoto DT; Lee D; Cui T; Prasad HS; Ahmad M
    J Biomed Mater Res A; 2011 Jan; 96(1):75-82. PubMed ID: 21105154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, mechanical properties and in vitro cytocompatibility of multi-walled carbon nanotubes/poly(etheretherketone) nanocomposites.
    Cao J; Lu Y; Chen H; Zhang L; Xiong C
    J Biomater Sci Polym Ed; 2018 Mar; 29(4):428-447. PubMed ID: 29284363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional culture of mandibular human osteoblasts on a novel albumin scaffold: growth, proliferation, and differentiation potential in vitro.
    Gallego L; Junquera L; Meana A; García E; García V
    Int J Oral Maxillofac Implants; 2010; 25(4):699-705. PubMed ID: 20657864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.
    Kroustalli AA; Kourkouli SN; Deligianni DD
    Ann Biomed Eng; 2013 Dec; 41(12):2655-65. PubMed ID: 23820769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells' spreading but delay their proliferation in the direction of differentiation acceleration.
    Deligianni DD
    Cell Adh Migr; 2014; 8(6):558-62. PubMed ID: 25482646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices.
    Ignatius A; Blessing H; Liedert A; Schmidt C; Neidlinger-Wilke C; Kaspar D; Friemert B; Claes L
    Biomaterials; 2005 Jan; 26(3):311-8. PubMed ID: 15262473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation.
    Lai CF; Cheng SL
    J Bone Miner Res; 2005 Feb; 20(2):330-40. PubMed ID: 15647827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization.
    Woo KM; Jun JH; Chen VJ; Seo J; Baek JH; Ryoo HM; Kim GS; Somerman MJ; Ma PX
    Biomaterials; 2007 Jan; 28(2):335-43. PubMed ID: 16854461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering.
    Lin C; Wang Y; Lai Y; Yang W; Jiao F; Zhang H; Ye S; Zhang Q
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):367-75. PubMed ID: 21208787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of enamel matrix proteins to a bovine-derived bone grafting material and its regulation of cell adhesion, proliferation, and differentiation.
    Miron RJ; Bosshardt DD; Hedbom E; Zhang Y; Haenni B; Buser D; Sculean A
    J Periodontol; 2012 Jul; 83(7):936-47. PubMed ID: 22141360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of grafted collagen-multiwalled carbon nanotubes composites.
    Cao Y; Zhou YM; Shan Y; Ju HX; Xue XJ
    J Nanosci Nanotechnol; 2007 Feb; 7(2):447-51. PubMed ID: 17450777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.