These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 24910397)
1. A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. Chao S; Romuald C; Fournel-Marotte K; Clavel C; Coutrot F Angew Chem Int Ed Engl; 2014 Jul; 53(27):6914-9. PubMed ID: 24910397 [TBL] [Abstract][Full Text] [Related]
3. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines. Busseron E; Coutrot F J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611 [TBL] [Abstract][Full Text] [Related]
4. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations. Li H; Li X; Wu Y; Agren H; Qu DH J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771 [TBL] [Abstract][Full Text] [Related]
5. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety. Han X; Cao M; Xu Z; Wu D; Chen Z; Wu A; Liu SH; Yin J Org Biomol Chem; 2015 Oct; 13(38):9767-74. PubMed ID: 26284316 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of triazolium-based mono- and tris-branched [1]rotaxanes using a molecular transporter of dibenzo-24-crown-8. Waelès P; Clavel C; Fournel-Marotte K; Coutrot F Chem Sci; 2015 Aug; 6(8):4828-4836. PubMed ID: 28717488 [TBL] [Abstract][Full Text] [Related]
7. A [2]rota[2]catenane, constructed from a pillar[5]arene-crown ether fused double-cavity macrocycle: synthesis and structural characterization. Hu WB; Hu WJ; Zhao XL; Liu YA; Li JS; Jiang B; Wen K Chem Commun (Camb); 2015 Sep; 51(73):13882-5. PubMed ID: 26225550 [TBL] [Abstract][Full Text] [Related]
8. Tetraphenylethene modified [n]rotaxanes: synthesis, characterization and aggregation-induced emission behavior. Liu G; Wu D; Liang J; Han X; Liu SH; Yin J Org Biomol Chem; 2015 Apr; 13(13):4090-100. PubMed ID: 25740623 [TBL] [Abstract][Full Text] [Related]
9. A novel pentiptycene bis(crown ether)-based [2](2)rotaxane whose two DB24C8 rings act as flapping wings of a butterfly. Ma YX; Meng Z; Chen CF Org Lett; 2014 Apr; 16(7):1860-3. PubMed ID: 24635015 [TBL] [Abstract][Full Text] [Related]
10. Rotaxanes with fluorocarbon blocking groups. Mahan EJ; Dennis JA Org Lett; 2006 Oct; 8(22):5085-8. PubMed ID: 17048849 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxane-Based Molecular Shuttles. Zheng LS; Cui JS; Jiang W Angew Chem Int Ed Engl; 2019 Oct; 58(42):15136-15141. PubMed ID: 31436864 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of large [2]rotaxanes. The relationship between the size of the blocking group and the stability of the rotaxane. Saito S; Takahashi E; Wakatsuki K; Inoue K; Orikasa T; Sakai K; Yamasaki R; Mutoh Y; Kasama T J Org Chem; 2013 Apr; 78(8):3553-60. PubMed ID: 23541290 [TBL] [Abstract][Full Text] [Related]
13. Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of PtII complexes. Yu G; Suzaki Y; Abe T; Osakada K Chem Asian J; 2012 Jan; 7(1):207-13. PubMed ID: 22034229 [TBL] [Abstract][Full Text] [Related]
14. Rotaxanes synthesized through sodium-ion-templated clipping of macrocycles around nonconjugated amide and urea functionalities. Ho TH; Lai CC; Liu YH; Peng SM; Chiu SH Chemistry; 2014 Apr; 20(16):4563-7. PubMed ID: 24633811 [TBL] [Abstract][Full Text] [Related]
15. Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi-Interlocked Molecular Machines. Legigan T; Riss-Yaw B; Clavel C; Coutrot F Chemistry; 2016 Jun; 22(26):8835-47. PubMed ID: 27239975 [TBL] [Abstract][Full Text] [Related]
16. Photoinduced Electron Transfer Involving a Naphthalimide Chromophore in Switchable and Flexible [2]Rotaxanes. Colasson B; Credi A; Ventura B Chemistry; 2020 Jan; 26(2):534-542. PubMed ID: 31638287 [TBL] [Abstract][Full Text] [Related]
17. Na+ ion templated threading of oligo(ethylene glycol) chains through BPX26C6 allows synthesis of [2]rotaxanes under solvent-free conditions. Wu KD; Lin YH; Lai CC; Chiu SH Org Lett; 2014 Feb; 16(4):1068-71. PubMed ID: 24499390 [TBL] [Abstract][Full Text] [Related]
18. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. Tachibana Y; Kawasaki H; Kihara N; Takata T J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495 [TBL] [Abstract][Full Text] [Related]
19. DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. Powell JT; Akhuetie-Oni BO; Zhang Z; Lin C Angew Chem Int Ed Engl; 2016 Sep; 55(38):11412-6. PubMed ID: 27527591 [TBL] [Abstract][Full Text] [Related]
20. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle. Waelès P; Fournel-Marotte K; Coutrot F Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]