BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24910440)

  • 1. SUMOylation of Psmd1 controls Adrm1 interaction with the proteasome.
    Ryu H; Gygi SP; Azuma Y; Arnaoutov A; Dasso M
    Cell Rep; 2014 Jun; 7(6):1842-8. PubMed ID: 24910440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1.
    Yao T; Song L; Xu W; DeMartino GN; Florens L; Swanson SK; Washburn MP; Conaway RC; Conaway JW; Cohen RE
    Nat Cell Biol; 2006 Sep; 8(9):994-1002. PubMed ID: 16906146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sumoylation as a signal for polyubiquitylation and proteasomal degradation.
    Miteva M; Keusekotten K; Hofmann K; Praefcke GJ; Dohmen RJ
    Subcell Biochem; 2010; 54():195-214. PubMed ID: 21222284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor.
    Tirard M; Almeida OF; Hutzler P; Melchior F; Michaelidis TM
    Mol Cell Endocrinol; 2007 Mar; 268(1-2):20-9. PubMed ID: 17314004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1γ sumoylation and poly-SUMO chain elongation.
    Sohn SY; Hearing P
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6725-30. PubMed ID: 27247387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoregulation of the 26S proteasome by in situ ubiquitination.
    Jacobson AD; MacFadden A; Wu Z; Peng J; Liu CW
    Mol Biol Cell; 2014 Jun; 25(12):1824-35. PubMed ID: 24743594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor.
    Jørgensen JP; Lauridsen AM; Kristensen P; Dissing K; Johnsen AH; Hendil KB; Hartmann-Petersen R
    J Mol Biol; 2006 Jul; 360(5):1043-52. PubMed ID: 16815440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism.
    VanderLinden RT; Hemmis CW; Yao T; Robinson H; Hill CP
    J Biol Chem; 2017 Jun; 292(23):9493-9504. PubMed ID: 28442575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High Affinity hRpn2-Derived Peptide That Displaces Human Rpn13 from Proteasome in 293T Cells.
    Lu X; Liu F; Durham SE; Tarasov SG; Walters KJ
    PLoS One; 2015; 10(10):e0140518. PubMed ID: 26466095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATG16 mediates the autophagic degradation of the 19S proteasomal subunits PSMD1 and PSMD2.
    Xiong Q; Fischer S; Karow M; Müller R; Meßling S; Eichinger L
    Eur J Cell Biol; 2018 Nov; 97(8):523-532. PubMed ID: 30269947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering the SUMOylation and ubiquitylation crosstalk in human cells using sequential peptide immunopurification.
    Lamoliatte F; McManus FP; Maarifi G; Chelbi-Alix MK; Thibault P
    Nat Commun; 2017 Jan; 8():14109. PubMed ID: 28098164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13.
    Aguileta MA; Korac J; Durcan TM; Trempe JF; Haber M; Gehring K; Elsasser S; Waidmann O; Fon EA; Husnjak K
    J Biol Chem; 2015 Mar; 290(12):7492-505. PubMed ID: 25666615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of REGγ cellular distribution and function by SUMO modification.
    Wu Y; Wang L; Zhou P; Wang G; Zeng Y; Wang Y; Liu J; Zhang B; Liu S; Luo H; Li X
    Cell Res; 2011 May; 21(5):807-16. PubMed ID: 21445096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure.
    Lu X; Ebelle DL; Matsuo H; Walters KJ
    Structure; 2020 May; 28(5):495-506.e3. PubMed ID: 32160516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37.
    Qiu XB; Ouyang SY; Li CJ; Miao S; Wang L; Goldberg AL
    EMBO J; 2006 Dec; 25(24):5742-53. PubMed ID: 17139257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PIAS1-mediated sumoylation promotes STUbL-dependent proteasomal degradation of the human telomeric protein TRF2.
    Her J; Jeong YY; Chung IK
    FEBS Lett; 2015 Oct; 589(21):3277-86. PubMed ID: 26450775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes.
    Hamazaki J; Iemura S; Natsume T; Yashiroda H; Tanaka K; Murata S
    EMBO J; 2006 Oct; 25(19):4524-36. PubMed ID: 16990800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
    Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN
    J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOXA, a sensor of proteasome integrity, is degraded by 26S proteasomes by an ubiquitin-independent pathway that is blocked by MCL-1.
    Craxton A; Butterworth M; Harper N; Fairall L; Schwabe J; Ciechanover A; Cohen GM
    Cell Death Differ; 2012 Sep; 19(9):1424-34. PubMed ID: 22361683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.