These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24910470)

  • 1. Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma.
    Zhang N; Zhang P; Kang W; Bluestein D; Deng Y
    J Comput Phys; 2014 Jan; 257(Pt A):726-736. PubMed ID: 24910470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach.
    Soares JS; Gao C; Alemu Y; Slepian M; Bluestein D
    Ann Biomed Eng; 2013 Nov; 41(11):2318-33. PubMed ID: 23695489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics.
    Zhang P; Gao C; Zhang N; Slepian MJ; Deng Y; Bluestein D
    Cell Mol Bioeng; 2014 Dec; 7(4):552-574. PubMed ID: 25530818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Coarse-Grained Model Based on Morse Potential for Water and n-Alkanes.
    Chiu SW; Scott HL; Jakobsson E
    J Chem Theory Comput; 2010 Mar; 6(3):851-63. PubMed ID: 26613312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiple Time Stepping Algorithm for Efficient Multiscale Modeling of Platelets Flowing in Blood Plasma.
    Zhang P; Zhang N; Deng Y; Bluestein D
    J Comput Phys; 2015 Mar; 284():668-686. PubMed ID: 25641983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse Grained Modeling of Multiphase Flows with Surfactants.
    Nguyen TXD; Vu TV; Razavi S; Papavassiliou DV
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results.
    Zhang P; Sheriff J; Einav S; Slepian MJ; Deng Y; Bluestein D
    J Biomech; 2021 Mar; 117():110275. PubMed ID: 33529943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization.
    Lu J; Qiu Y; Baron R; Molinero V
    J Chem Theory Comput; 2014 Sep; 10(9):4104-20. PubMed ID: 26588552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale modeling of cellular actin filaments: from atomistic molecular to coarse-grained dynamics.
    Deriu MA; Shkurti A; Paciello G; Bidone TC; Morbiducci U; Ficarra E; Audenino A; Acquaviva A
    Proteins; 2012 Jun; 80(6):1598-609. PubMed ID: 22411308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models.
    Han Y; Dama JF; Voth GA
    J Chem Phys; 2018 Jul; 149(4):044104. PubMed ID: 30068206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-particle collision dynamics with a non-ideal equation of state. I.
    Zantop AW; Stark H
    J Chem Phys; 2021 Jan; 154(2):024105. PubMed ID: 33445899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties.
    Fu CC; Kulkarni PM; Shell MS; Leal LG
    J Chem Phys; 2013 Sep; 139(9):094107. PubMed ID: 24028102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of Hybrid Particle-Field Molecular Dynamics and Slip-Springs for the Efficient Simulation of Coarse-Grained Polymer Models: Static and Dynamic Properties of Polystyrene Melts.
    Wu Z; Milano G; Müller-Plathe F
    J Chem Theory Comput; 2021 Jan; 17(1):474-487. PubMed ID: 33275441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation Behavior of Model Asphaltenes Revealed from Large-Scale Coarse-Grained Molecular Simulations.
    Jiménez-Serratos G; Totton TS; Jackson G; Müller EA
    J Phys Chem B; 2019 Mar; 123(10):2380-2396. PubMed ID: 30735393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating the flow of entangled polymers.
    Masubuchi Y
    Annu Rev Chem Biomol Eng; 2014; 5():11-33. PubMed ID: 24498953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations.
    Petsev ND; Leal LG; Shell MS
    J Chem Phys; 2017 Dec; 147(23):234112. PubMed ID: 29272926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new perspective on the coarse-grained dynamics of fluids.
    Ayton GS; Tepper HL; Mirijanian DT; Voth GA
    J Chem Phys; 2004 Mar; 120(9):4074-88. PubMed ID: 15268574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.