These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24910519)

  • 1. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
    Venturi D; Karniadakis GE
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130754. PubMed ID: 24910519
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gouasmi A; Parish EJ; Duraisamy K
    Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170385. PubMed ID: 28989314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mori-Zwanzig Formalism for General Relativity: A New Approach to the Averaging Problem.
    Te Vrugt M; Hossenfelder S; Wittkowski R
    Phys Rev Lett; 2021 Dec; 127(23):231101. PubMed ID: 34936793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
    Barajas-Solano DA; Tartakovsky AM
    Phys Rev E; 2016 May; 93(5):052121. PubMed ID: 27300844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics.
    Chorin AJ; Lu F
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9804-9. PubMed ID: 26216975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.
    Te Vrugt M; Wittkowski R
    Phys Rev E; 2019 Jun; 99(6-1):062118. PubMed ID: 31330634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified projection operator formalism in nonequilibrium statistical mechanics.
    Uchiyama C; Shibata F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2636-50. PubMed ID: 11970065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs.
    Faugeras O; Touboul J; Cessac B
    Front Comput Neurosci; 2009; 3():1. PubMed ID: 19255631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the projection operator formalism to non-hamiltonian dynamics.
    Xing J; Kim KS
    J Chem Phys; 2011 Jan; 134(4):044132. PubMed ID: 21280712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Markovian systems out of equilibrium: exact results for two routes of coarse graining.
    Jung G
    J Phys Condens Matter; 2022 Mar; 34(20):. PubMed ID: 35180708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing generalized Langevin equations and generalized Fokker-Planck equations.
    Darve E; Solomon J; Kia A
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10884-9. PubMed ID: 19549838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time evolution of probability density in stochastic dynamical systems with time delays: The governing equation and its numerical solution.
    Sun X; Yang F
    Chaos; 2022 Dec; 32(12):123124. PubMed ID: 36587317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise.
    Lu Y; Duan J
    Chaos; 2020 Sep; 30(9):093110. PubMed ID: 33003930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-correlation corrected friction in generalized Langevin models: Application to the continuous Asakura-Oosawa model.
    Klippenstein V; van der Vegt NFA
    J Chem Phys; 2022 Jul; 157(4):044103. PubMed ID: 35922348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic coarse-graining of linear and non-linear systems: Mori-Zwanzig formalism and beyond.
    Jung B; Jung G
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37615392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations.
    Los VF
    Phys Rev E; 2020 Nov; 102(5-1):052136. PubMed ID: 33327200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak Galilean invariance as a selection principle for coarse-grained diffusive models.
    Cairoli A; Klages R; Baule A
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5714-5719. PubMed ID: 29760057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation expansions of stochastic wavefunctions for open quantum systems.
    Ke Y; Zhao Y
    J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.