These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24910519)

  • 21. Perturbation expansions of stochastic wavefunctions for open quantum systems.
    Ke Y; Zhao Y
    J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kernel-Based Approximation of the Koopman Generator and Schrödinger Operator.
    Klus S; Nüske F; Hamzi B
    Entropy (Basel); 2020 Jun; 22(7):. PubMed ID: 33286494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization.
    Li Z; Bian X; Yang X; Karniadakis GE
    J Chem Phys; 2016 Jul; 145(4):044102. PubMed ID: 27475343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-dependent projection operator and nonlinear generalized master equations.
    Los VF
    Phys Rev E; 2022 Sep; 106(3-1):034107. PubMed ID: 36266881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties.
    Tartakovsky DM; Broyda S
    J Contam Hydrol; 2011 Mar; 120-121():129-40. PubMed ID: 20926156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
    Ott W; Rivas MA; West J
    J Stat Phys; 2015 Dec; 161(5):1098-1111. PubMed ID: 28066028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Derivation of delay equation climate models using the Mori-Zwanzig formalism.
    Falkena SKJ; Quinn C; Sieber J; Frank J; Dijkstra HA
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190075. PubMed ID: 31423091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit.
    Izvekov S
    Phys Rev E; 2017 Jan; 95(1-1):013303. PubMed ID: 28208451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tractable nonlinear memory functions as a tool to capture and explain dynamical behaviors.
    Herrera-Delgado E; Briscoe J; Sollich P
    Phys Rev Res; 2020 Oct; 2(4):043069. PubMed ID: 36855604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions.
    Erban R
    J Math Biol; 2020 Jan; 80(1-2):457-479. PubMed ID: 31541299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations.
    Dambrine M; Khan AA; Sama M
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2236):20210352. PubMed ID: 36154473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.
    Zhang HD; Yan Y
    J Phys Chem A; 2016 May; 120(19):3241-5. PubMed ID: 26757138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous learning of nonlocal stochastic neuron dynamics.
    Maltba TE; Zhao H; Tartakovsky DM
    Cogn Neurodyn; 2022 Jun; 16(3):683-705. PubMed ID: 35603048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-dependent propagators for stochastic models of gene expression: an analytical method.
    Veerman F; Marr C; Popović N
    J Math Biol; 2018 Aug; 77(2):261-312. PubMed ID: 29247320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data.
    Sun W; Feng J; Su J; Guo Q
    Phys Rev E; 2023 Sep; 108(3-2):035306. PubMed ID: 37849188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.
    de la Cruz R; Guerrero P; Calvo J; Alarcón T
    J Comput Phys; 2017 Dec; 350():974-991. PubMed ID: 29200499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise.
    Fahim K; Hausenblas E; Kovács M
    Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Behavior of a single element in a finite stochastic array.
    Gómez-Ordóñez J; Casado JM; Morillo M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051121. PubMed ID: 23004717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stochastic unraveling of time-local quantum master equations beyond the Lindblad class.
    Kleinekathöfer U; Kondov I; Schreiber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):037701. PubMed ID: 12366307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient solution of stochastic oscillators with both odd and even nonlinearity under modulated Gaussian white noise.
    Luo J; Er GK; Iu VP; Lam CC
    Phys Rev E; 2023 Aug; 108(2-1):024209. PubMed ID: 37723791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.