These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24910713)

  • 1. Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments.
    Gao X; Kumar R; Singh S; Simmons BA; Balan V; Dale BE; Wyman CE
    Biotechnol Biofuels; 2014; 7():71. PubMed ID: 24910713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover.
    Uppugundla N; da Costa Sousa L; Chundawat SP; Yu X; Simmons B; Singh S; Gao X; Kumar R; Wyman CE; Dale BE; Balan V
    Biotechnol Biofuels; 2014; 7():72. PubMed ID: 24917886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Feb; 102(2):457-67. PubMed ID: 18781688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.
    Banerjee G; Car S; Scott-Craig JS; Borrusch MS; Walton JD
    Biotechnol Biofuels; 2010 Oct; 3():22. PubMed ID: 20939889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis.
    Xue S; Uppugundla N; Bowman MJ; Cavalier D; Da Costa Sousa L; E Dale B; Balan V
    Biotechnol Biofuels; 2015; 8():195. PubMed ID: 26617670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.
    Mathew AK; Parameshwaran B; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Jan; 199():13-20. PubMed ID: 26358144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Apr; 102(6):1544-57. PubMed ID: 19170246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover.
    Gunawan C; Xue S; Pattathil S; da Costa Sousa L; Dale BE; Balan V
    Biotechnol Biofuels; 2017; 10():82. PubMed ID: 28360940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings.
    Bals BD; Gunawan C; Moore J; Teymouri F; Dale BE
    Biotechnol Bioeng; 2014 Feb; 111(2):264-71. PubMed ID: 23955838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant.
    Shao Q; Chundawat SP; Krishnan C; Bals B; Sousa Lda C; Thelen KD; Dale BE; Balan V
    Biotechnol Biofuels; 2010 Jun; 3():12. PubMed ID: 20534126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids.
    Lloyd TA; Wyman CE
    Bioresour Technol; 2005 Dec; 96(18):1967-77. PubMed ID: 16112484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies.
    Kumar R; Wyman CE
    Bioresour Technol; 2009 Sep; 100(18):4203-13. PubMed ID: 19386492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover.
    Qing Q; Wyman CE
    Biotechnol Biofuels; 2011 Jun; 4(1):18. PubMed ID: 21702938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.
    Zhu Z; Sathitsuksanoh N; Vinzant T; Schell DJ; McMillan JD; Zhang YH
    Biotechnol Bioeng; 2009 Jul; 103(4):715-24. PubMed ID: 19337984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover.
    Li C; Cheng G; Balan V; Kent MS; Ong M; Chundawat SP; Sousa Ld; Melnichenko YB; Dale BE; Simmons BA; Singh S
    Bioresour Technol; 2011 Jul; 102(13):6928-36. PubMed ID: 21531133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor: investigation of yields, kinetics, and enzymatic digestibilities of solids.
    Schell DJ; Farmer J; Newman M; McMillan JD
    Appl Biochem Biotechnol; 2003; 105 -108():69-85. PubMed ID: 12721476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.