These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

830 related articles for article (PubMed ID: 24910773)

  • 1. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.
    Fernandes AD; Reid JN; Macklaim JM; McMurrough TA; Edgell DR; Gloor GB
    Microbiome; 2014; 2():15. PubMed ID: 24910773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies.
    Thorsen J; Brejnrod A; Mortensen M; Rasmussen MA; Stokholm J; Al-Soud WA; Sørensen S; Bisgaard H; Waage J
    Microbiome; 2016 Nov; 4(1):62. PubMed ID: 27884206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. It's all relative: analyzing microbiome data as compositions.
    Gloor GB; Wu JR; Pawlowsky-Glahn V; Egozcue JJ
    Ann Epidemiol; 2016 May; 26(5):322-9. PubMed ID: 27143475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. metaSPARSim: a 16S rRNA gene sequencing count data simulator.
    Patuzzi I; Baruzzo G; Losasso C; Ricci A; Di Camillo B
    BMC Bioinformatics; 2019 Nov; 20(Suppl 9):416. PubMed ID: 31757204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LOCOM: A logistic regression model for testing differential abundance in compositional microbiome data with false discovery rate control.
    Hu Y; Satten GA; Hu YJ
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122788119. PubMed ID: 35867822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. metamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models.
    Ho NT; Li F; Wang S; Kuhn L
    BMC Bioinformatics; 2019 Apr; 20(1):188. PubMed ID: 30991942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified RNA-seq method for microbial community and diversity analysis using rRNA in different types of environmental samples.
    Yan YW; Zou B; Zhu T; Hozzein WN; Quan ZX
    PLoS One; 2017; 12(10):e0186161. PubMed ID: 29016661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.
    Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA
    BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Rare Microbiome Taxa Filtering on Statistical Analysis.
    Cao Q; Sun X; Rajesh K; Chalasani N; Gelow K; Katz B; Shah VH; Sanyal AJ; Smirnova E
    Front Microbiol; 2020; 11():607325. PubMed ID: 33510727
    [No Abstract]   [Full Text] [Related]  

  • 11. Microbiome Datasets Are Compositional: And This Is Not Optional.
    Gloor GB; Macklaim JM; Pawlowsky-Glahn V; Egozcue JJ
    Front Microbiol; 2017; 8():2224. PubMed ID: 29187837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. intePareto: an R package for integrative analyses of RNA-Seq and ChIP-Seq data.
    Cao Y; Kitanovski S; Hoffmann D
    BMC Genomics; 2020 Dec; 21(Suppl 11):802. PubMed ID: 33372591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From RNA-seq to Biological Inference: Using Compositional Data Analysis in Meta-Transcriptomics.
    Macklaim JM; Gloor GB
    Methods Mol Biol; 2018; 1849():193-213. PubMed ID: 30298256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MetaLonDA: a flexible R package for identifying time intervals of differentially abundant features in metagenomic longitudinal studies.
    Metwally AA; Yang J; Ascoli C; Dai Y; Finn PW; Perkins DL
    Microbiome; 2018 Feb; 6(1):32. PubMed ID: 29439731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies.
    Culviner PH; Guegler CK; Laub MT
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for assessing 16S rRNA marker-gene survey data analysis methods using mixtures.
    Olson ND; Kumar MS; Li S; Braccia DJ; Hao S; Timp W; Salit ML; Stine OC; Bravo HC
    Microbiome; 2020 Mar; 8(1):35. PubMed ID: 32169095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.