These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24910852)

  • 1. Targeted MicroRNA Interference Promotes Postnatal Cardiac Cell Cycle Re-Entry.
    Zhang Y; Matsushita N; Eigler T; Marbán E
    J Regen Med; 2013; 2():2. PubMed ID: 24910852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA profiling during rat ventricular maturation: A role for miR-29a in regulating cardiomyocyte cell cycle re-entry.
    Cao X; Wang J; Wang Z; Du J; Yuan X; Huang W; Meng J; Gu H; Nie Y; Ji B; Hu S; Zheng Z
    FEBS Lett; 2013 May; 587(10):1548-55. PubMed ID: 23587482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of microRNA during cardiomyocyte maturation in sheep.
    Morrison JL; Zhang S; Tellam RL; Brooks DA; McMillen IC; Porrello ER; Botting KJ
    BMC Genomics; 2015 Jul; 16(1):541. PubMed ID: 26198574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy.
    Huang S; Zou X; Zhu JN; Fu YH; Lin QX; Liang YY; Deng CY; Kuang SJ; Zhang MZ; Liao YL; Zheng XL; Yu XY; Shan ZX
    J Cell Mol Med; 2015 Mar; 19(3):608-19. PubMed ID: 25583328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle regulation in mouse heart during embryonic and postnatal stages.
    Ikenishi A; Okayama H; Iwamoto N; Yoshitome S; Tane S; Nakamura K; Obayashi T; Hayashi T; Takeuchi T
    Dev Growth Differ; 2012 Oct; 54(8):731-8. PubMed ID: 22957921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP).
    Ma W; Xie S; Ni M; Huang X; Hu S; Liu Q; Liu A; Zhang J; Zhang Y
    J Biol Chem; 2012 Mar; 287(13):10189-10199. PubMed ID: 22194605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts.
    Chen J; Huang ZP; Seok HY; Ding J; Kataoka M; Zhang Z; Hu X; Wang G; Lin Z; Wang S; Pu WT; Liao R; Wang DZ
    Circ Res; 2013 Jun; 112(12):1557-66. PubMed ID: 23575307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival.
    Yang Y; Del Re DP; Nakano N; Sciarretta S; Zhai P; Park J; Sayed D; Shirakabe A; Matsushima S; Park Y; Tian B; Abdellatif M; Sadoshima J
    Circ Res; 2015 Oct; 117(10):891-904. PubMed ID: 26333362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway.
    Xu S; Wu W; Huang H; Huang R; Xie L; Su A; Liu S; Zheng R; Yuan Y; Zheng HL; Sun X; Xiong XD; Liu X
    Aging Cell; 2019 Jun; 18(3):e12918. PubMed ID: 30848072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDK inhibitors, p21(Cip1) and p27(Kip1), participate in cell cycle exit of mammalian cardiomyocytes.
    Tane S; Ikenishi A; Okayama H; Iwamoto N; Nakayama KI; Takeuchi T
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1105-9. PubMed ID: 24380855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors.
    Ganesan J; Ramanujam D; Sassi Y; Ahles A; Jentzsch C; Werfel S; Leierseder S; Loyer X; Giacca M; Zentilin L; Thum T; Laggerbauer B; Engelhardt S
    Circulation; 2013 May; 127(21):2097-106. PubMed ID: 23625957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism.
    Nagalingam RS; Sundaresan NR; Noor M; Gupta MP; Solaro RJ; Gupta M
    J Biol Chem; 2014 Sep; 289(39):27199-27215. PubMed ID: 25104350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclins and cyclin dependent kinases during cardiac development.
    Kang MJ; Kim JS; Chae SW; Koh KN; Koh GY
    Mol Cells; 1997 Jun; 7(3):360-6. PubMed ID: 9264023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in E2F complexes containing retinoblastoma protein family members and increased cyclin-dependent kinase inhibitor activities during terminal differentiation of cardiomyocytes.
    Flink IL; Oana S; Maitra N; Bahl JJ; Morkin E
    J Mol Cell Cardiol; 1998 Mar; 30(3):563-78. PubMed ID: 9515032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine.
    Velayutham N; Alfieri CM; Agnew EJ; Riggs KW; Baker RS; Ponny SR; Zafar F; Yutzey KE
    J Mol Cell Cardiol; 2020 Sep; 146():95-108. PubMed ID: 32710980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development.
    Koh KN; Kang MJ; Frith-Terhune A; Park SK; Kim I; Lee CO; Koh GY
    J Mol Cell Cardiol; 1998 Mar; 30(3):463-74. PubMed ID: 9515024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-29a-3p attenuates ET-1-induced hypertrophic responses in H9c2 cardiomyocytes.
    Li M; Wang N; Zhang J; He HP; Gong HQ; Zhang R; Song TF; Zhang LN; Guo ZX; Cao DS; Zhang TC
    Gene; 2016 Jul; 585(1):44-50. PubMed ID: 26992639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptide Y Induces Cardiomyocyte Hypertrophy
    Xie Y; Hu J; Zhang X; Li C; Zuo Y; Xie S; Zhang Z; Zhu S
    Protein Pept Lett; 2020; 27(9):878-887. PubMed ID: 32297569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential and dramatic changes of cyclin-dependent kinase activities in cardiomyocytes during the neonatal period.
    Kang MJ; Koh GY
    J Mol Cell Cardiol; 1997 Jul; 29(7):1767-77. PubMed ID: 9236132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression.
    Shekhar R; Priyanka P; Kumar P; Ghosh T; Khan MM; Nagarajan P; Saxena S
    J Biol Chem; 2019 Mar; 294(12):4381-4400. PubMed ID: 30679313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.