BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 24910898)

  • 41. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1.
    Zhou SY; Xie ZL; Xiao O; Yang XR; Heng BC; Sato Y
    Mol Vis; 2010 Jul; 16():1389-98. PubMed ID: 20680097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model.
    Gore A; Horwitz V; Cohen M; Gutman H; Cohen L; Gez R; Kadar T; Dachir S
    Exp Eye Res; 2018 Jun; 171():183-191. PubMed ID: 29548928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn.
    Doganay S; Firat PG; Cankaya C; Kirimlioglu H
    Burns; 2013 Mar; 39(2):326-30. PubMed ID: 22922008
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization.
    Zuo L; Fan Y; Wang F; Gu Q; Xu X
    Curr Eye Res; 2010 May; 35(5):375-84. PubMed ID: 20450250
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation.
    Liu Y; Shu Y; Yin L; Xie T; Zou J; Zhan P; Wang Y; Wei T; Zhu L; Yang X; Wang W; Cai J; Li Y; Yao Y; Wang X
    Exp Eye Res; 2021 Jun; 207():108568. PubMed ID: 33839112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The anti-inflammatory effect of subconjunctival bevacizumab on chemically burned rat corneas.
    Oh JY; Kim MK; Shin MS; Lee HJ; Lee JH; Wee WR
    Curr Eye Res; 2009 Feb; 34(2):85-91. PubMed ID: 19219678
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas.
    Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J
    Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Nintedanib Nanothermoreversible Hydrogel on Neovascularization in an Ocular Alkali Burn Rat Model.
    Liu X; Wu S; Gong Y; Yang L
    Curr Eye Res; 2022 Dec; 47(12):1578-1589. PubMed ID: 36259508
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy.
    Cejkova J; Cejka C; Trosan P; Zajicova A; Sykova E; Holan V
    Exp Eye Res; 2016 Jun; 147():128-137. PubMed ID: 27181227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of RAP1 enhances corneal recovery following alkali injury.
    Poon MW; Yan L; Jiang D; Qin P; Tse HF; Wong IY; Wong DS; Tergaonkar V; Lian Q
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):711-21. PubMed ID: 25574050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury.
    Kim DW; Lee SH; Shin MJ; Kim K; Ku SK; Youn JK; Cho SB; Park JH; Lee CH; Son O; Sohn EJ; Cho SW; Park JH; Kim HA; Han KH; Park J; Eum WS; Choi SY
    BMB Rep; 2015 Nov; 48(11):618-23. PubMed ID: 25817214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.
    Zeng P; Pi RB; Li P; Chen RX; Lin LM; He H; Zhou SY
    Mol Vis; 2015; 21():688-98. PubMed ID: 26120273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation the effect of
    Yılmaz U; Kaya H; Turan M; Bir F; Şahin B
    Cutan Ocul Toxicol; 2019 Dec; 38(4):356-359. PubMed ID: 31137972
    [No Abstract]   [Full Text] [Related]  

  • 54. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury.
    Yamada J; Dana MR; Sotozono C; Kinoshita S
    Exp Eye Res; 2003 Feb; 76(2):161-7. PubMed ID: 12565803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of subconjunctivally injected bevacizumab, etanercept, and the combination of both drugs on experimental corneal neovascularization.
    Ozdemir O; Altintas O; Altintas L; Yildiz DK; Sener E; Caglar Y
    Can J Ophthalmol; 2013 Apr; 48(2):115-20. PubMed ID: 23561605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neovascular growth in an experimental alkali corneal burn model.
    Figueroa-Ortiz LC; Martín Rodríguez O; García-Ben A; García-Campos J
    Arch Soc Esp Oftalmol; 2014 Aug; 89(8):303-7. PubMed ID: 24969736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Minocycline inhibits alkali burn-induced corneal neovascularization in mice.
    Xiao O; Xie ZL; Lin BW; Yin XF; Pi RB; Zhou SY
    PLoS One; 2012; 7(7):e41858. PubMed ID: 22848638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Efficacy of epigallocatechin gallate in treatment of alkali burn injury of murine cornea].
    Wu LQ; Lu M
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2015 Jan; 44(1):15-23. PubMed ID: 25851970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ; Hyon JY; Choi WS; Yi K; Chung ES; Chung TY; Wee WR
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4452-8. PubMed ID: 23716625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.