These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 24911545)

  • 1. Molecular mechanisms of aldehyde toxicity: a chemical perspective.
    LoPachin RM; Gavin T
    Chem Res Toxicol; 2014 Jul; 27(7):1081-91. PubMed ID: 24911545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of soft and hard electrophile toxicities.
    LoPachin RM; Geohagen BC; Nordstroem LU
    Toxicology; 2019 Apr; 418():62-69. PubMed ID: 30826385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of structure-activity relationships to investigate the molecular mechanisms of hepatocyte toxicity and electrophilic reactivity of alpha,beta-unsaturated aldehydes.
    Chan K; Poon R; O'Brien PJ
    J Appl Toxicol; 2008 Nov; 28(8):1027-39. PubMed ID: 18626890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of the conjugated alpha,beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases.
    LoPachin RM; Barber DS; Gavin T
    Toxicol Sci; 2008 Aug; 104(2):235-49. PubMed ID: 18083715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.
    Lopachin RM; Gavin T; Decaprio A; Barber DS
    Chem Res Toxicol; 2012 Feb; 25(2):239-51. PubMed ID: 22053936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry.
    LoPachin RM; Gavin T
    Environ Health Perspect; 2012 Dec; 120(12):1650-7. PubMed ID: 23060388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation.
    LoPachin RM; Gavin T; Petersen DR; Barber DS
    Chem Res Toxicol; 2009 Sep; 22(9):1499-508. PubMed ID: 19610654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint toxic effects of the type-2 alkene electrophiles.
    Zhang L; Geohagen BC; Gavin T; LoPachin RM
    Chem Biol Interact; 2016 Jul; 254():198-206. PubMed ID: 27288850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotoxic mechanisms of electrophilic type-2 alkenes: soft soft interactions described by quantum mechanical parameters.
    LoPachin RM; Gavin T; Geohagen BC; Das S
    Toxicol Sci; 2007 Aug; 98(2):561-70. PubMed ID: 17519395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.
    Charneira C; Godinho AL; Oliveira MC; Pereira SA; Monteiro EC; Marques MM; Antunes AM
    Chem Res Toxicol; 2011 Dec; 24(12):2129-41. PubMed ID: 22032494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liabilities Associated with the Formation of "Hard" Electrophiles in Reactive Metabolite Trapping Screens.
    Kalgutkar AS
    Chem Res Toxicol; 2017 Jan; 30(1):220-238. PubMed ID: 27802597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal.
    Lopachin RM; Geohagen BC; Gavin T
    Toxicol Sci; 2009 Jan; 107(1):171-81. PubMed ID: 18996889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.
    Zhang J; Wang C; Ji L; Liu W
    Chem Res Toxicol; 2016 May; 29(5):841-50. PubMed ID: 26929981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity.
    Lopachin RM; Barber DS; Geohagen BC; Gavin T; He D; Das S
    Toxicol Sci; 2007 Jan; 95(1):136-46. PubMed ID: 17023561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC; Pitt AR; Spickett CM
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by α,β-unsaturated carbonyl derivatives.
    Martyniuk CJ; Fang B; Koomen JM; Gavin T; Zhang L; Barber DS; Lopachin RM
    Chem Res Toxicol; 2011 Dec; 24(12):2302-11. PubMed ID: 22084934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.
    Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G
    Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds.
    Schultz TW; Yarbrough JW
    SAR QSAR Environ Res; 2004 Apr; 15(2):139-46. PubMed ID: 15199949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae.
    Jayakody LN; Jin YS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2675-2692. PubMed ID: 33743026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.