These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 24911584)
1. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Goh JS; Liu Y; Chan KF; Wan C; Teo G; Zhang P; Zhang Y; Song Z Bioengineered; 2014; 5(4):269–73. PubMed ID: 24911584 [TBL] [Abstract][Full Text] [Related]
2. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Goh JS; Liu Y; Liu H; Chan KF; Wan C; Teo G; Zhou X; Xie F; Zhang P; Zhang Y; Song Z Biotechnol J; 2014 Jan; 9(1):100-9. PubMed ID: 24166780 [TBL] [Abstract][Full Text] [Related]
3. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Goh JS; Zhang P; Chan KF; Lee MM; Lim SF; Song Z Metab Eng; 2010 Jul; 12(4):360-8. PubMed ID: 20346410 [TBL] [Abstract][Full Text] [Related]
4. Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants. Goh JS; Chan KF; Song Z Methods Mol Biol; 2015; 1321():323-33. PubMed ID: 26082232 [TBL] [Abstract][Full Text] [Related]
5. Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. Jeong YT; Choi O; Lim HR; Son YD; Kim HJ; Kim JH J Microbiol Biotechnol; 2008 Dec; 18(12):1945-52. PubMed ID: 19131698 [TBL] [Abstract][Full Text] [Related]
6. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Son YD; Jeong YT; Park SY; Kim JH Glycobiology; 2011 Aug; 21(8):1019-28. PubMed ID: 21436238 [TBL] [Abstract][Full Text] [Related]
7. Mammalian α-1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylglucosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans. Yang Q; Wang LX J Biol Chem; 2016 May; 291(21):11064-71. PubMed ID: 27008861 [TBL] [Abstract][Full Text] [Related]
8. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis. Kwak CY; Park SY; Lee CG; Okino N; Ito M; Kim JH Sci Rep; 2017 Oct; 7(1):13059. PubMed ID: 29026192 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells. Lee CG; Oh MJ; Park SY; An HJ; Kim JH Sci Rep; 2018 May; 8(1):7273. PubMed ID: 29740059 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Park JH; Wang Z; Jeong HJ; Park HH; Kim BG; Tan WS; Choi SS; Park TH Appl Microbiol Biotechnol; 2012 Nov; 96(3):671-83. PubMed ID: 22714097 [TBL] [Abstract][Full Text] [Related]
12. [Extracellular sialidase degrades sialic acid in recombinant human erythropoietin produced by an industrial Chinese hamster ovary cell strain]. Liu Y; Zhou X; Liu H; Song Z; Zhang Y Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1492-9. PubMed ID: 23593873 [TBL] [Abstract][Full Text] [Related]
13. Co-overexpression of Mgat1 and Mgat4 in CHO cells for production of highly sialylated albumin-erythropoietin. Cha HM; Lim JH; Yeon JH; Hwang JM; Kim DI Enzyme Microb Technol; 2017 Aug; 103():53-58. PubMed ID: 28554385 [TBL] [Abstract][Full Text] [Related]
14. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Wong NS; Yap MG; Wang DI Biotechnol Bioeng; 2006 Apr; 93(5):1005-16. PubMed ID: 16432895 [TBL] [Abstract][Full Text] [Related]
15. Generating and characterizing a comprehensive panel of CHO cells glycosylation mutants for advancing glycobiology and biotechnology research. Haryadi R; Chan KF; Lin PC; Tan YL; Wan C; Shahreel W; Tay SJ; Nguyen-Khuong T; Walsh I; Song Z Sci Rep; 2024 Oct; 14(1):23068. PubMed ID: 39367021 [TBL] [Abstract][Full Text] [Related]
16. Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the α2,3 sialylation linkage of mammalian glycoproteins. Chung CY; Yin B; Wang Q; Chuang KY; Chu JH; Betenbaugh MJ Biochem Biophys Res Commun; 2015 Jul; 463(3):211-5. PubMed ID: 25998389 [TBL] [Abstract][Full Text] [Related]
17. A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Yin B; Wang Q; Chung CY; Bhattacharya R; Ren X; Tang J; Yarema KJ; Betenbaugh MJ Biotechnol Bioeng; 2017 Aug; 114(8):1899-1902. PubMed ID: 28295160 [TBL] [Abstract][Full Text] [Related]
18. Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Wang Q; Chung CY; Yang W; Yang G; Chough S; Chen Y; Yin B; Bhattacharya R; Hu Y; Saeui CT; Yarema KJ; Betenbaugh MJ; Zhang H Biotechnol J; 2019 Apr; 14(4):e1800186. PubMed ID: 30221828 [TBL] [Abstract][Full Text] [Related]
19. Remodeling of sugar chain structures of human interferon-gamma. Fukuta K; Abe R; Yokomatsu T; Kono N; Asanagi M; Omae F; Minowa MT; Takeuchi M; Makino T Glycobiology; 2000 Apr; 10(4):421-30. PubMed ID: 10764830 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Jeong YT; Choi O; Son YD; Park SY; Kim JH Biotechnol Appl Biochem; 2009 Apr; 52(Pt 4):283-91. PubMed ID: 18590515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]