BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24911585)

  • 1. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.
    Kuznetsov NA; Kuznetsova AA; Vorobjev YN; Krasnoperov LN; Fedorova OS
    PLoS One; 2014; 9(6):e98495. PubMed ID: 24911585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase.
    Schmaltz LF; Ceniceros JE; Lee S
    Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence--stopped-flow pre-steady-state kinetics.
    Kuznetsov NA; Vorobjev YN; Krasnoperov LN; Fedorova OS
    Nucleic Acids Res; 2012 Aug; 40(15):7384-92. PubMed ID: 22584623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine.
    Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V
    Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
    Banerjee A; Yang W; Karplus M; Verdine GL
    Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex.
    Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS
    DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New non-hydrolyzable substrate analogs for 8-oxoguanine-DNA glycosylases].
    Taraneneko MV; Volkov EM; Saparbarv MK; Kuznetsov SA
    Mol Biol (Mosk); 2004; 38(5):858-68. PubMed ID: 15554188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of recognition and repair of damaged DNA by human 8-oxoguanine DNA glycosylase hOGG1.
    Kuznetsov NA; Koval VV; Fedorova OS
    Biochemistry (Mosc); 2011 Jan; 76(1):118-30. PubMed ID: 21568844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1.
    Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL
    J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic conformational analysis of human 8-oxoguanine-DNA glycosylase.
    Kuznetsov NA; Koval VV; Nevinsky GA; Douglas KT; Zharkov DO; Fedorova OS
    J Biol Chem; 2007 Jan; 282(2):1029-38. PubMed ID: 17090545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Analysis of Fast Stages of Specific Lesion Recognition by DNA Repair Enzymes.
    Kuznetsov NA; Fedorova OS
    Biochemistry (Mosc); 2016 Oct; 81(10):1136-1152. PubMed ID: 27908238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway.
    Raper AT; Maxwell BA; Suo Z
    J Mol Biol; 2021 Mar; 433(5):166811. PubMed ID: 33450252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase.
    Kuznetsov NA; Koval VV; Zharkov DO; Nevinsky GA; Douglas KT; Fedorova OS
    Nucleic Acids Res; 2005; 33(12):3919-31. PubMed ID: 16024742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for Avoidance of Promutagenic DNA Repair by MutY Adenine DNA Glycosylase.
    Wang L; Lee SJ; Verdine GL
    J Biol Chem; 2015 Jul; 290(28):17096-105. PubMed ID: 25995449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and kinetic basis for recognition and repair of 8-oxoguanine in DNA by human 8-oxoguanine-DNA glycosylase.
    Kirpota OO; Endutkin AV; Ponomarenko MP; Ponomarenko PM; Zharkov DO; Nevinsky GA
    Nucleic Acids Res; 2011 Jun; 39(11):4836-50. PubMed ID: 21343179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1.
    Jiang T; Monari A; Dumont E; Bignon E
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases.
    McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS
    J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.