These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1104 related articles for article (PubMed ID: 24912107)
1. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria. Gutiérrez-Ginés MJ; Hernández AJ; Pérez-Leblic MI; Pastor J; Vangronsveld J J Environ Manage; 2014 Oct; 143():197-207. PubMed ID: 24912107 [TBL] [Abstract][Full Text] [Related]
2. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
3. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Martínez-Alcalá I; Walker DJ; Bernal MP Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590 [TBL] [Abstract][Full Text] [Related]
4. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation. Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047 [TBL] [Abstract][Full Text] [Related]
5. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499 [TBL] [Abstract][Full Text] [Related]
6. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils. Vázquez S; Carpena RO; Bernal MP Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992 [TBL] [Abstract][Full Text] [Related]
7. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Balseiro-Romero M; Gkorezis P; Kidd PS; Van Hamme J; Weyens N; Monterroso C; Vangronsveld J Sci Total Environ; 2017 Mar; 581-582():676-688. PubMed ID: 28069305 [TBL] [Abstract][Full Text] [Related]
8. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. El Aafi N; Brhada F; Dary M; Maltouf AF; Pajuelo E Int J Phytoremediation; 2012 Mar; 14(3):261-74. PubMed ID: 22567710 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
10. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. Pastor J; Hernández AJ; Prieto N; Fernández-Pascual M J Plant Physiol; 2003 Dec; 160(12):1457-65. PubMed ID: 14717438 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J; Panwar R Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928 [TBL] [Abstract][Full Text] [Related]
12. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Song YF; Wilke BM; Song XY; Gong P; Zhou QX; Yang GF Chemosphere; 2006 Dec; 65(10):1859-68. PubMed ID: 16707147 [TBL] [Abstract][Full Text] [Related]
13. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Dary M; Chamber-Pérez MA; Palomares AJ; Pajuelo E J Hazard Mater; 2010 May; 177(1-3):323-30. PubMed ID: 20056325 [TBL] [Abstract][Full Text] [Related]
14. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC; Bagard M; van Hullebusch ED; Esposito G; Huguenot D Sci Total Environ; 2016 Sep; 563-564():693-703. PubMed ID: 26524994 [TBL] [Abstract][Full Text] [Related]
15. Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on Wawra A; Friesl-Hanl W; Jäger A; Puschenreiter M; Soja G; Reichenauer T; Watzinger A Environ Sci Pollut Res Int; 2018 Mar; 25(7):6364-6377. PubMed ID: 29249024 [TBL] [Abstract][Full Text] [Related]
16. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds ─ a microcosmic study. Sarma H; Sonowal S; Prasad MNV Ecotoxicol Environ Saf; 2019 Jul; 176():288-299. PubMed ID: 30947032 [TBL] [Abstract][Full Text] [Related]
17. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
18. Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. Wang L; Lin H; Dong Y; Li B; He Y Chemosphere; 2020 Feb; 240():124891. PubMed ID: 31574442 [TBL] [Abstract][Full Text] [Related]
19. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T; Kluk D Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant. Gałązka A; Gałązka R Pol J Microbiol; 2015; 64(3):241-52. PubMed ID: 26638532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]